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HENRI POINCARE

EvERY CONCLUSION supposes premises; these premises themselves either
are self-evident and need no demonstration, or can be established only by
relying upon other propositions, and since we can not go back thus to
infinity, every deductive science, and in particular geometry, must rest
on a certain number of undemonstrable axioms. All treatises on geometry
begin, therefore, by the enunciation of these axioms. But among these there
is a distinction to be made: Some, for example, ‘Things which are equal
to the same thing are equal to one another,’ are not propositions of geom-
etry, but propositions of analysis. 1 regard them as analytic judgments
a priori, and shall not concern myself with them.

But I must lay stress upon other axioms which are peculiar to geom-
etry. Most treatises enunciate three of these explicitly:

1° Through two points can pass only one straight;

2° The straight line is the shortest path from one point to another;

3° Through a given point there is not more than one parallel to a
given straight.

Although generally a proof of the second of these axioms is omitted,
it would be possible to deduce it from the other two and from those, much
more numerous, which are implicitly admitted without enunciating them,
as I shall explain further on.

It was long sought in vain to demonstrate likewise the third axiom,
known as Euclid’s Postulate. What vast effort has been wasted in this
chimeric hope is truly unimaginable. Finally, in the first quarter of the
nineteenth century, and almost at the same time, a Hungarian and a Rus-
sian, Bolyai and Lobachevski, established irrefutably that this demonstra-
tion is impossible; they have almost rid us of inventors of geometries ‘sans
postulatum’; since then the Académie des Sciences reccives only about
one or two new demonstrations a year.

The question was not exhausted; it soon made a great stride by the
publication of Riemann’s celebrated memoir entitled: Ueber die Hy pothe-
sen welche der Geometrie zu Grunde liegen. This paper has inspired most
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of the recent works of which I shall speak further on, and among which
it is proper to cite those of Beltrami and of Helmholtz.

The Bolyai-Lobachevski Geometry. If it were possible to deduce
Fuclid’s postulate from the other axioms, it is evident that in denying the
postulate and admitting the other axioms, we should be led to contradictory
consequences; it would therefore be impossible to base on such premise-
a coherent geometry.

Now this is precisely what Lobachevski did.

He assumes at the start that: Through a given point can be drawn two
parallels to a given straight.

And he retains besides all Euclid’s other axioms. From these hypotheses
he deduces a series of theorems among which it is impossible to find any
contradiction, and he constructs a geometry whose faultless logic is in-
ferior in nothing to that of the Euclidean geometry.

The theorems are, of course, very different from those to which we
are accustomed, and they can not fail to be at first a little disconcerting.

Thus the sum of the angles of a triangle is always less than two right
angles, and the difference between this sum and two right angles is pro-
portional to the surface of the triangle.

It is impossible to construct a figure similar to a given figure but of dif-
ferent dimensions.

If we divide a circumference into 7 equal parts, and draw tangents at
the points of division, these # tangents will form a polygon if the radius
of the circle is small enough; but if this radius is sufficiently great they will
not meet.

It is useless to multiply these examples; Lobachevski’s propositions
have no relation to those of Euclid, but they are not less logically bound onc
to another.

Riemann’s Geometry. Imagine a world uniquely peopled by beings
of no thickness (height); and suppose these ‘infinitely flat’ animals are all
in the same plane and can not get out. Admit besides that this world is suf-
ficiently far from others to be free from their influence. While we are
making hypotheses, it costs us no more to endow these beings with reason
and believe them capable of creating a geometry. In that case, they will
certainly attribute to space only two dimensions.

But suppose now that these imaginary animals, while remaining with-
out thickness, have the form of a sPherical, and not of a plane figure, and
are all on the same sphere without power to get off. What geometry will
they construct? First it is clear they will attribute to space only two dimen-
sions; what will play for them the role of the straight line will be the short-
est path from one point to another on the sphere, that is to say an arc of a
great circle; in a word, their geometry will be the spherical geometry.

What they will call space will be this sphere on which they must stay.
and on which happen all the phenomena they can know. Their space will
therefore be unbounded since on a sphere one can always go forward with-
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out ever being stopped, and-yet it will be finite; one can never find the end
of it, but one can make a tour of it.

Well, Riemann’s geometry is spherical geometry extended to three
dimensions. To construct it, the German mathematician had to throw over-
board, not only Euclid’s postulate, but also the first axiom: Only one
straight can pass through rwo points.

On a sphere, through two given points we can draw in general only
one great circle (which, as we have just seen, would play the role of the
straight for our imaginary beings); but there is an exception: if the two
given points are diametrically opposite, an infinity of great circles can be
drawn through them.

In the same way, in Riemann’s geometry (at least in one of its forms),
through two points will pass in general only a single straight; but there
are exceptional cases where through two points an infinity of straights
can pass.

There is a sort of opposition between Riemann’s geometry and that
of Lobachevski.

Thus the sum of the angles of a triangle is:

Equal to two right angles in Euclid’s geometry;

Less than two right angles in that of Lobachevski;

Greater than two right angles in that of Riemann.

The number of straights through a given point that can be drawn
coplanar to a given straight, but nowhere meeting i, is equal:

To one in Euclid’s geometry;

To zero in that of Riemann;

To infinity in that of Lobachevski.

Add that Riemann’s space is finite, although unbounded in the sense
given above to these two words.

The Surfaces of Constant Curvature. One objection still remained pos-
sible. The theorems of Lobachevski and of Riemann present no contradic-
tion; but however numerous the consequences these two geometers have
drawn from their hypotheses, they must have stopped before exhausting
them, since their number would be infinite; who can say then that if they
had pushed their deductions farther they would not have eventually
reached some contradiction?
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Interpretation of Non-Euclidean Geometries.

Consider a certain plane, which I shall call the fundamental plane, and
construct a sort of dictionary, by making correspond each to each a double
series of terms written in two columns, just as correspond in the ordinax-y
dictionaries the words of two languages whose signification is the same:

Space: Portion of space situated above the fundamental plane.

Plane: Sphere cutting the fundamental plane orthogonally.

Straight: Circle cutting the fundamental plane orthogonally.

Sphere: Sphere.

Circle: Circle.

Angle: Angle.

Distance between two points: Logarithm of the cross ratio of these
two points and the intersections of the fundamental plane with a circle
passing through these two points and cutting it orthogonally.

Etc., Etc.

Now take Lobachevski’s theorems and translate them with the aid
of this dictionary as we translate a German text with the aid of a German-
English dictionary. We shall thus obtain theorems of the ordinary geon:-
etry. For example, that theorem of Lobachevski: ‘the sum of the angles
of a triangle is less than two right angles’ is translated thus: “If a cur-
vilinear triangle has for sides circle-arcs which prolonged would cut
orthogonally the fundamental plane, the sum of the angles of this curvilin-
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ear triangle will be less than two. right angles.” Thus, however far the
consequences of Lobachevski's hypotheses are pushed, they will never lead
to a contradiction. In fact, if two of Lobachevski's theorems were contra-
dictory, it would be the same with the translations of these two theorems,
made by the aid of our dictionary, but these translations are theorems of
ordinary geometry and no one doubts that the ordinary geometry is free
from contradiction. Whence comes this certainty and is it justified? That is
a question | can not treat here because it would require to be enlarged upon,
but which is very interesting and 1 think not insoluble.

Nothing remains then of the objection above formulated. This is not
all. Lobachevski's geometry, susceptible of a concrete interpretation, ceases
to be a vain logical exercise and is capable of applications; 1 have not the
time to speak here of these applications, nor of the aid that Klein and I
have gotten from them for the integration of linear differential equations.

This interpretation moreover is not unique, and several dictionaries
analogous to the preceding could be constructed, which would enable us
by a simple ‘translation’ to transform Lobachevski’s theorems into theorems
of ordinary geometry.

On the Nature of Axioms. Most mathematicians regard Lobachevski’s
geometry only as a mere logical curiosity; some of them, however, have
gone farther. Since several geometries are possible, is it certain ours is the
true one? Experience no doubt teaches us that the sum of the angles of a
triangle is equal to two right angles; but this is because the triangles we
deal with are too little; the difference, according to Lobachevski, is pro-
portional to the surface of the triangle; will it not perhaps become sensible
‘when we shall operate on larger triangles or when our measurements shall
become more precise? The Euclidean geometry would thus be only a
provisional geometry.

To discuss this opinion, we should first ask ourselves what is the nature
of the geometric axioms.

Are they synthetic a priori judgments, as Kant said?

They would then impose themselves upon us with such force, that we
could not conceive the contrary proposition, nor build upon it a theoretic
edifice. There would be no non-Euclidean geometry.

To be convinced of it take a veritable synthetic a priori judgment, the
following, for instance: _

If atheorem is true for the number 1, and if it bas been proved that it is
true of n 4 1 provided it is true of n, it will be true of all the positive whole
numbers.

Then try to escape from that and, denying this proposition, try to
found a false arithmetic analogous to non-Euclidean geometry—it can not
be done; one would even be tempted at first blush to regard these judgments
‘25 analytic.

; Moreover, resuming our fiction of animals without thickness, we can
hardly admit that these beings, if their minds are like ours, would adopt

176 SPACE, TIME, AND RELATIVITY

the Euclidean geometry which would be contradicted by all their ex-
erience.

Should we therefore conclude that the axioms of geometry are ex-
perimental verities? But we do not experiment on ideal straights or circles;
it can only be done on material objects. On what then could be based
experiments which should serve as foundation for geometry? The answer
is easy.

We have seen above that we constantly reason as if the geometric
ﬁgures behaved like solids. What geometry would borrow from experience
would therefore be the properties of these bodies. The properties of light
and its rectilinear propagation have also given rise to some of the prop-
ositions of geometry, and in particular those of projective geometry, so
that from this point of view one would be tempted to say that metric
geometry is the study of solids, and projective. that of light.

But a difﬁculty remains, and it is insurmountable, If geometry were
an experimental science, it would not be an exact science, it would be sub-
ject to a continual revision. Nay, it would from this very day be convicted
of error, since we know that there is no rigorously rigid solid.

The axioms of geometry therefore are neither synthetic a priori judg-
ments nor experimental facts.

They are conventions; our choice among all possible conventions is
guided by experimental facts; but it remains free and is limited only by the
necessity of avoiding all contradiction. Thus it is that the postulates can
remain rigorously true even though the experimental laws which have de-
termined their adoption are only approximative.

In other words, the axioms of geometry (I do not speak of those of
arithmetic) are merely disguised definitions.

Then what are we to think of that question: Is the Euclidean geometry
true?

It has no meaning.

As well ask whether the metric system is true and the old measures
false; whether Cartesian coordinates are true and polar coordinates false.
One geometry can not be more true than another; it can only be more
convenient.

Now, Euclidean geometry is, and will remain, the most convenient:

1° Because it is the simplest; and it is so not only in consequence of
our mental habits, or of I know not what direct intuition that we may have
of Euclidean space; it is the simplest in itself, just as a polynomial of the
first degree is simpler than one of the second; the formulas of spherical
trigonometry are more complicated than those of plane trigonometry, and
they would still appear so to an analyst ignorant of their geometric sig-
nification.

2° Because it accords sufficiently well with the properties of natural
solids, those bodies which our hands and our eye compare and with which
we make our instruments of measure.
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The Non-Euclidean World. If geometric space were a frame imposed
on cach of our representations, considered individually, it would be im-
possible to represent to ourselves an image stripped of this frame, and
we could change nothing of our geometry.

But this is not the case; geometry is only the résumé of the laws ac-
cording to which these images succeed each other. Nothing then prevents
us from imagining a series of representations, similar in all points to our
ordinary representations but succeeding one another according to laws
different from those to which we are accustomed.

We can conceive then that beings who received their education in an
environment where these laws were thus upset might have a geometry very
different from ours.

Suppose, for example, a world enclosed in a great sphere and subject
to the following laws:

The temperature is not uniforms; it is greatest at the center, and dimin-
ishes in proportion to the distance from the center, to sink to absolute zero
when the sphere is reached in which this world is enclosed.

To specify still more precisely the law in accordance with which this
temperature varies: Let R be the radius of the limiting sphere; let r be the
distance of the point considered from the center of this sphere. The abso-
lute temperature shall be proportional to R? — r2.

1 shall further suppose that, in this world, all bodies have the same
coefficient of dilatation, so that the length of any rule is proportional to its
absolute temperature,

Finally, I shall suppose that a body transported from one point to
another of different temperature is put immediately into thermal equi-
librium with its new environment.

Nothing in these hypotheses is contradictory or unimaginable.

A movable object will then become smaller and smaller in proportion
as it approaches the limit-sphere.

Note first that, though this world is limited from the point of view
of our ordinary geometry, it will appear infinite to its inhabitants.

In fact, when these try to approach the limit-sphere, they coo! off and
become smaller and smaller. Therefore the steps they take are also smaller
and smaller, so that they can never reach the limiting sphere.

If, for us, geometry is only the study of the laws according to which
rigid solids move, for these imaginary beings it will be the study of the laws
of motion of solids distorted by the differences of temperature just spoken
of.

No doubt, in our world, natural solids likewise undergo variations
O.f form and volume duc to warming or cooling. But we neglect these varia-
Uons in laying the foundations of geometry, because, besides their being
very slight, they are irregular and consequently seem to us accidental.

_Inour hypothetical world, this would no longer be the case, and these
Variations would follow regular and very simple laws.
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Moreover, the various solid pieces of which the bodies of its inhabit-
ants would be composed would undergo the same variations of form and
volume.

To justify what precedes, it remains for me to show that certain
changes in the position of external objects can be corrected by correlative
movements of the sentient beings inhabiting this imaginary world, and
that in such a way as to restore the primitive aggregate of impressions ex-
perienced by these sentient beings.

Suppose in fact that an object is displaced, undergoing deformation,
not as a rigid solid, but as a solid subjected to unequal dilatations in exact
conformity to the law of temperature above supposed. Permit me for
brevity to call such a movement a non-Euclidean displacement.

If a sentient being happens to be in the neighborhood, his impressions
will be modified by the displacement of the object, but he can reestablish
them by moving in a suitable manner. It suffices if finally the aggregate of
the object and the sentient being, considered as forming a single body, has
undergone one of those particular displacements I have just called non-
Euclidean. This is possible if it be supposed that the limbs of these beings
dilate according to the same law as the other bodies of the world they in-
habit.

Although from the point of view of our ordinary geometry there is a
deformation of the bodies in this displacement and their various parts are
no longer in the same relative position, nevertheless we shall see that the
impressions of the sentient being have once more become the same.

In fact, though the mutual distances of the various parts may have
varied, yet the parts originally in contact are again in contact. Therefore
the tactile impressions have not changed.

On the other hand, taking into account the hypothesis made above in
regard to the refraction and the curvature of the rays of light, the visual
impressions will also have remained the same.

These imaginary beings will therefore like ourselves be led to classify
the phenomena they witness and to distinguish among them the ‘changes
of position’ susceptible of correction by a correlative voluntary movement.

If they construct a geometry, it will not be, as ours is, the study of the
movements of our rigid solids; it will be the study of the changes of position
which they will thus have distinguished and which are none other than the
‘non-Euclidean displacements’; it will be non-Euclidean geometry.

Thus beings like ourselves, educated in such a world, would not have
the same geometry as ours,
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The sense of sight, even with a single eve, together with the muscular
sensations relative to the movements of the eyeball, would suffice to teach
us space of three dimensions.

The images of external objects are painted on the retina, which is a
two-dimensional canvas; they are perspectives.

But, as eye and objects are movable, we see in succession various
perspectives of the same body, taken from different points of view.

At the same time, we find that the transition from one perspective to
another is often accompanied by muscular sensations.

If the transition from the perspzctive A to the perspective B, and that
from the perspective A’ to the perspective B’ are accompanied by the same
muscular sensations, we liken them one to the other as operations of the
same nature.

Studying then the laws according to which these operations combine,
we recognize that they form a group, which has the same structure as
that of the movements of rigid solids.

Now, we have seen that it is from the properties of this group we have
derived the notion of geometric space and that of three dimensions.

We understand thus how the idea of a space of three dimensions could
take birth from the pageant of these perspectives, though each of them is
of only two dimensions, since they follow one another according to certain
laws.

Well, just as the perspective of a three-dimensional figure can be made
on a plane, we can make that of a four-dimensional figure on a picrure
of three (or of two) dimensions. To a geometer this is only child’s
play.

We can even take of the same figure several perspectives from several
different points of view.

We can easily represent to ourselves these perspectives, since they are
of only three dimensions.

Imagine that the various perspectives of the same object succeed one
another, and that the transition from one to the other is accompanied by
muscular sensations.

We shall of course consider two of these transitions as two operations
of the same nature when they are associated with the same muscular sensa-
tions.

Nothing then prevents us from imagining that these operations com-
bine according to any law we choose, for example, so as to form a group
with the same structure as that of the movements of a rigid solid of four
dimensions.

Here there is nothing unpicturable, and yet these sensations are pre-
cisely those which would be felt by a being possessed of a two-dimensional
retina who could move in space of four dimensions. In this sense we may
say the fourth dimension is imaginable.

Conclusions. We see that experience plays an indispensable role in the
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genesis of geometry; but it would be an error thence to conclude thar
geometry is, even in part, an experimental science.

If it were experimental, it would be only approximative and provi-
sional. And what rough approximation!

Geometry would be only the study of the movements of solids; but in
reality it is not occupied with natural solids, it has for object certain ideal
solids, absolutely rigid, which are only a simplified and very remote image
of natural solids.

The notion of these ideal solids is drawn from all parts of our mind,
and experience is only an occasion which induces us to bring it forth from
them.

The object of geometry is the study of a particular ‘group’; but the
general group concept pre-exists, at least potentially, in our minds. It is
imposed on us, not as form of our sense, but as form of our understanding.

Only, from among all the possible groups, that must be chosen which
will be, so to speak, the standard to which we shall refer natural phe-
nomena.

Experience guides us in this choice without forcing it upon us; it tells
us not which is the truest geometry, but which is the most convenient.

Notice that I have been able to describe the fantastic worlds above:

imagined without ceasing to employ the language of ordinary geometry.
And, in fact, we should not have to change it if transported thither.
Beings educated there would doubtless find it more convenient to
create a geometry different from ours, and better adapted to their impres-
sions. As for us, in face of the sazze impressions, it is certain we should find
it more convenient not to change our habits.

These concluding remarks will make more sense upon
reading Einstein and Reichenbach
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