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Geometry and Experience
ALBERT EINSTEIN

ONE REASON WHY mathematics enjoys special esteem, above all other sci-
ences, is that its laws are absolutely certain and indisputable, while those of
all other sciences are to some extent debatable and in constant danger of
being overthrown by newly discovered facts. In spite of this, the investi-
gator in another department of science would not need to envy the mathe-
matician if the laws of mathematics referred to objects of our mere imagi-
nation, and not to objects of reality. For it cannot occasion surprise that
different persons should arrive at the same logical conclusions when they
have already agreed upon the fundamental laws (axioms), as well as the
methods by which other laws are to be deduced therefrom. But there is
another reason for the high repute of mathematics, in that it is mathematics
which affords the exact natural sciences a certain measure of security, to
which without mathematics they could not attain.

At this point an enigma presents itself which in all ages has agitated
inquiring minds. How can it be that mathematics, being after all a product
of human thought which is independent of experience, is so admirably
appropriate to the objects of reality? Is human reason, then, without ex-
perience, merely by taking thought, able to fathom the properties of real
things?

In my opinion the answer to this question is, briefly, this:—As far as
the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality. It seems to me that complete
clearness as to this state of things first became common property through
that new departure in mathematics which is known by the name of mathe-
matical logic or “Axiomatics.” The progress achieved by axiomatics con-
sists in its having neatly separated the logical-formal from its objective or
intuitive content; according to axiomatics the logical-formal alone forms
the subject-matter of mathematics, which is not concerned with the intu-
itive or other content associated with the logical-formal.

Let us for a moment consider from this point of view any axiom of
geometry, for instance, the following:—Through two points in space there
always passes one and only one straight line. How is this axiom to be in-
terpreted in the older sense and in the more modern sense?

* Reprinted by kind permission of the author and the publisher from Albert Ein-
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The older interpretation:—Every one knows what a straight line is,
and what a point is. Whether this knowledge springs from an ability of the
human mind or from experience, from some collaboration of the two or
from some other source, is not for the mathematician to decide. He leaves
the question to the philosopher. Being baszd upon this knowledge, whick
precedes all mathematics, the axiom statcd above is, like all other axioms,
self-evident, that is, it is the expression of a part of this a priori knowledge_

The more modern interpretation: —Geometry treats of entities which
are denoted by the words straight line, point, etc. These entities do not
take for granted any knowledge or intuition whatever, but they presupposc
only the validity of the axioms, such as the one stated above, which are
to be taken in a purely formalsense, i.e. as void of all content of intuition o1
experience. These axioms are free creations of the human mind. All other
propositions of geometry are logical inferences from the axioms (which are
to be taken in the nominalistic sense only). The matter of which geometry
treats is first defined by the axioms. Schlick in his book on epistemology
has therefore characterized axioms very aptly as “implicit definitions.”

This view of axioms, advocated by modern axiomatics, purges mathe-
matics of all extraneous elements, and thus dispels the mystic obscurity
which formerly surroundzd the principles of mathematics. But a presenta-
tion of its principles thus clarified makes it also evident that mathematics
as such cannot predicate anything about perceptual objects or real ob-
jects. In axiomatic geometry the words “point,” “straight line,” etc., stand
only for empty conceptual schemata. That which gives them substance is
not relevant to mathematics.

Yet on the other hand it is certain that mathematics generally, and par-
ticularly geometry, owes its existence to the need which was felt of learn-
ing something about the relations of real things to one another. The very
word geometry, which, of course, means earth-measuring, proves this. For
carth-measuring has to do with the possibilities of the disposition of certain
natural objects with respect to one another, namely, with parts of the earth,
measuring-lines, measuring-wands, etc. It is clear that the system of con-
cepts of axiomatic geometry alone cannot make any assertions as to the
relations of real objects of this kind, which we will call practically -rigid
bodies. To be able to make such assertions, geomstry must be stripped of
its merely logical-formal character by the co-ordination of real objects of
experience with the empty conceptual frame-work of axiomatic geometry.
To accomplish this we need only add the proposition:—Solid bodies are
related, with respect to their possible dispositions, as are bodies in Euclidean
geometry of three dimensions. Then the propositions of Euclid contain
affirmations as to the relations of practically-rigid bodies.

Geometry thus completed is evidently a natura] science; we may in
fact regard it as the most ancient branch of physics. Its affirmations rest
essentially on induction from experience, but not on logical inferences only-
We will call this completed geometry “practical geometry,” and shall dis-
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tinguish it in what follows from “purely axiomatic geometry. ” The ques-
tion whether the practlc,al geometry of the universe is Euclidean or not
has a clear meaning, and its answer can only be furnished by experience.
All linear measurement in physics is practical geometry in this sense, so too
is geodetic and astronomical linear measurement, if we call to our help the
law of cxperience that light is propagated in a straight line, and indeed in a
straight line in the sense of practical geometry.

I attach special importance to the view of geometry which T have just
set forth, because without it I should have been unable to formulate the
theory of relativity. Without it the followmg reflection would have been
impossible:—In a system of reference rotating relatively to an inert system,
the laws of dlsposmon of rigid bodies do not correspond to the rules of
Euclidean geometry on account of the Lorentz contraction; thus if we
admit non-inert systems we must abandon Euclidean gecometry. The de-
cisive step in the transition to general co-variant equations would certainly
not have been taken if the above interpretation had not served as a stepping-
stone. If we deny the relation between the body of axiomatic Euclidean
geometry and the practically-rigid body of reality, we readily arrive at the
following view, which was entertained by that acute and profound thinker,
H. Poincaré:—FEuclidean geometry is distinguished above all other imagin-
able axiomatic geometries by its simplicity. Now since axiomatic geometry
by itself contains no assertions as to the reality which can be experienced,
but can do so only in combination with physical laws, it should be possible
and reasonable—whatever may be the nature of reality—to retain Euclid-
ean geometry. For if contradictions between theory and expzrience mani-
fest themselves, we should rather decide to change physical laws than to
change axiomatic Euclidean geometry. If we deny the relation between
the practically-rigid body and geometry, we shall indeed not easily free
ourselves from the convention that Euclidean geometry is to be retained
as the simplest. Why is the equivalence of the practically-rigid body and
the body of geometry—which suggests itself so readily—denied by Poin-
caré and other investigators? Simply because under closer inspection the
real solid bodies in nature are not rigid, because their geometrical be-
haviour, that is, their possibilities of relative disposition, depend upon tem-
perature, external forces, etc. Thus the original, immediate relation be-
tween geometry and physical reality appcars destroyed, and we feel
impelled toward the following more general view, which characterizes
Poincaré’s standpoint. Geometry (G) predicates nothing about the rela-
tions of real things, but only geometry together with the purport (P) of
Physical laws can do so. Using symbols, we may say that only the sum of
(GQ) + (P) is subject to the control of experiencz. Thus (G) may be
chosen arbitrarily, and also parts of (P); all these laws are conventions. Al
that is nccessary to avoid contradictions is to choose the remainder of
(P) so that (G) and the whole of (P) are together in accord with ex-
Perience. Envisaged in this way, axiomatic geometry and the part of natural
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law which has been given a conventional status appear as epistemologically
equivalent.

Sub specie aeterni Poincaré, in my opinion, is right. The idea of the
measuring-rod and the idea of the clock co-ordinated with it in the theory
of relativity do not find their exact correspondence in the real world. It is
also clear that the solid body and the clock do not in the conceptual edifice
of physics play the part of irreducible elements, but that of composite
structures, which may not play any independent part in theoretica) physics.
But it is my conviction that in the present stage of development of theo-
retical physics these ideas must still be employed as independent ideas; for
we are still far from possessing such certain knowledge of theoretical prin-
ciples as to be able to give exact theoretical constructions of solid bodies
and clocks.

Further, as to the objection that there are no really rigid bodies in
nature, and that therefore the properties predicated of rigid bodies do not
apply to physical reality,—this objection is by no means so radical as might
appear from a hasty examination. For it is not a difficult task to determine
the physical state of a measuring-rod so accurately that its behaviour rela-
tively to other measuring-bodies shall be suﬂiuently free from ambiguity
to allow it to be substituted for the * ‘rigid” body. It is to measuring-bodies
of this kind that statements as to rigid bodies must be referred.

All practical geometry is based upon a principle which is accessible
to experience, and which we will now try to realise. We will call that
which is enclosed between two boundaries, marked upon a practically-
rigid body, a tract. We imagine two practically-rigid bodies, each with a
tract marked out on it. These two tracts are said to be “equal to one an-
other” if the boundaries of the one tract can be brought to coincide per-
manently with the boundaries of the other. We now assume that:

If two tracts are found to be equal once and anywhere, they are equal
always and everywhere.

Not only the practical geometry of Euclid, but also its nearest gen-
eralisation, the practical geometry of Riemann, and therewith the general
theory of relativity, rest upon this assumption. Of the experimental reasons
which warrant this assumption I will mention only one. The phenomenon
of the propagation of light in empty space assigns a tract, namely, the ap-
propriate path of light, to each interval of local time, and conversely.
Thence it follows that the above assumption for tracts must also hold
good for intervals of clock-time in the theory of relativity. Consequently
it may be formulated as follows:—If two ideal clocks are going at the same
rate at any time and at any place (being then in immediate proximity to
each other), they will always go at the same rate, no matter where and
when they are again compared with each other at one place.
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geometry. This is the ultimate foundation in fact which enables us to speak
with meaning of the mensuration, in Riemann’s sense of the word, of the
four-dimensional continuum of space-time.

The question whether the structure of this continuum is Fuclidean, or
in accordance with Riemann’s general scheme, or otherwise, is, according
to the view which is here being advocated, properly speaking a physical
question which must be answered by experience, and not a question of
a mere convention to be selected on practical grounds. Riemann’s geometry
will be the right thing if the laws of disposition of practically-rigid bodies
are transformable into those of the bodies of Fuclid’s geometry with an
exactitude which increases in proportion as the dimensions of the part
of space-time under consideration are diminished.

It is true that this proposed physical interpretation of geometry breaks
down when applied immediately to spaces of sub-molecular order of magni-
tude. But nevertheless, even in questions as to the constitution of elementary
particles, it retains part of its importance. For even when it is a question of
describing the electrical elementary particles constituting matter, the at-
tempt may still be made to ascribe physical importance to those ideas of
fields which have been physically defined for the purpose of describing
the geometrical behaviour of bodies which are large as compared with the
molecule. Success alone can decide as to the justification of such an at-
tempt, which postulates physical reality for the fundamental principles
of Riemann’s geometry outside of the domain of their physical definitions.
It might possibly turn out that this extrapolation has no better warrant
than the extrapolation of the idea of temperature to parts of a body of
molecular order of magnitude.

It appears less problematical to extend the ideas of practical geometry
to spaces of cosmic order of magnitude. It might, of course, be objected
that a construction composed of solid rods departs more and more from
ideal rigidity in proportion as its spatial extent becomes greater. But it
will hardly be possible, I think, to assign fundamental significance to this
objection. Therefore the question whether the universe is spatially finite
or not seems to me decidedly a pregnant question in the sense of practical
geometry. I do not even consider it impossible that this question will be
answered before long by astronomy. Let us call to mind what the general
theory of relativity teaches in this respect. It offers two possibilities: —

1. The universe is spatially infinite. This can be so only if the average
spatial density of the matter in universal space, concentrated in the stars,
vanishes, i.e. if the ratio of the total mass of the stars to the magnitude of
the space through which they are scattered approximates indefinitely to the
value zero when the spaces taken into consideration are constantly greater
and greater.

2. The universe is spatially finite. This must be so, if there is a mean
density of the ponderable matter in universal space differing from zero.
The smaller that mean density, the greater is the volume of universal space.

I must not fail to mention that a theoretical argument can be adduced
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in favour of the hypothesis of a finite universe. The general theory of rela-
tivity teaches that the inertia of a given body is greater as there are more
ponderable massss in proximity to it; thus it seems very natural to reduce
the total effect of inertia of a body to action and reaction bztween it and
the other bodies in the universe, as indeed, ever since Newton’s time,
gravity has been completely reduced to action and reaction between bodi-s.
From the equations of the general theory of relativity it can be deduced
that this total reduction of inertia to reciprocal action between masses—as
required by E. Mach, for example—is possible only if the universe is spa-~
tially finite.

On many physicists and astronomers this argument makes no impres-
sion. Experience alone can finally decide which of the two possibilities is
realised in nature. How can experience furnish an answer? At first it might
seem possible to determine the mean density of matter by observation of
that part of the universe which is accessible to our perception. This hope is
illusory. The disiribution of the visible stars is extremely irregular, so
that we on no account may venture to set down the mean density of star-
matter in the universe as equal, let us say, to the mean density in the Milky
Way. In any case, however great the space examined may be, we could not
feel convinced that there were no more stars beyond that space. So it
seems impossible to estimate the mean density.

But there is another road, which seems to me more practicable, al-
though it also presents great difficulties. For if we inquire into the devia-
tions shown by the consequences of the general theory of relativity which
are accessible to experience, when these are compared with the conse-
quences of the Newtonian theory, we first of all find a deviation which
shows itself in close proximity to gravitating mass, and has been confirmed
in the case of the planet Mercury. But if the universe is spatially finite
there is a second deviation from the Newtonian theory, which, in the
language of the Newtonian theory, may be expressed thus:—The gravi-
tational field is in its nature such as if it were produced, not only by the
ponderable masses, but also by a mass-density of negative sign, distributed
uniformly throughout space. Since this factitious mass-density would have
to be enormously small, it could make its presence felt only in gravitating
systems of very great extent.

Assuming that we know, let us say, the statistical distribution of the
stars in the Milky Way, as well as their masses, then by Newton’s law
we can calculate the gravitational field and the mean velocities which the
stars must have, so that the Milky Way should not collapse under the
mutual attraction of its stars, but should maintain its actual extent. Now
if the actual velocities of the stars, which can, of course, be measured,
were smaller than the calculated velocities, we should have a proof that
the actual attractions at great distances are smaller than by Newton’s lavf'.
From such a deviation it could be proved indirectly that the universe 15
finite. It would even be possible to estimate its spatial magnitude.



