Metaphysics // Fall 2018

Handout 3

Design argument: Sober

Preliminaries. Distinguish first between individual intervention and single intervention. You may think that each observable event is a direct result of God's intervention. Or you may think that God decrees laws that 'produce' individual processes.

Similarly, you have a distinction between the theories of intelligent design and theistic evolutionism. According to Intelligent Design, each complex adaptation is a direct result of God's intervention. According to theistic evolutionism, God decrees sets in motion evolutionary processes that are responsible for complex adaptations. Theistic evolutionism is a thesis about the origin of the universe, and is consistent with the atheist evolutionary theory.

The best formulation of the design argument is probabilistic. We can never get a logical inference that would show a contradiction in the chance hypothesis. Rather, we should say that, if a mindless system appears teleological, it probably was made by an intelligent designer.

Some basic notions. To assess the design argument probabilistically, we need to introduce some notions first:
(1) $\mathrm{P}(H \mid E)$: posterior probability of H. This is the probability of the hypothesis H given the body of evidence E.
(2) $\mathrm{P}(E \mid H)$: likelihood of H. This is the probability of the evidence E given the hypothesis H.
(3) Bayes's Theorem:

$$
\mathrm{P}(H \mid E)=\frac{\mathrm{P}(H) \mathrm{P}(E \mid H)}{\mathrm{P}(E)}
$$

The problem with posterior probabilities. Suppose we wish to claim that one hypothesis is 'probabilistically better' than another. This might mean that available evidence favours that hypothesis. Applying this idea to our case, one way to go would be this:

$$
\mathrm{P}(\mathrm{ID} \mid O) \gg \mathrm{P}(\text { Chance } \mid O) .
$$

But this involves assessing P (ID) and P (Chance).
Question 1. Explain the last claim.
The likelihood principle. Sober proposes a way around the difficulty with posterior probabilities. Say that observation O supports hypothesis H_{1} more than it supports H_{2} just in case:

$$
\mathrm{P}\left(O \mid H_{1}\right)>\mathrm{P}\left(O \mid H_{2}\right)
$$

Again, this is a claim of how to interpret evidence: namely, how much empirical support a hypothesis gets from the given observation. In evaluating the posterior probability we evaluate the probability of a hypothesis given the already available evidence. In evaluating 'likelihood' we evaluate the probability of the event given the hypothesis.
Example 2. Suppose I am driving on the Eskisehir yolu and the lights are out. This is our evidence O. This event would be expected (unsurprising) if the aliens were charging their spaceship batteries from the Ankara city power station (hypothesis H). So:

$$
\mathrm{P}(O \mid H) \approx 1
$$

However, $\mathrm{P}(H \mid O)$ is still very low. Intuitively, the evidence need not increase the probability of my inane hypothesis. Why? Because it is too inane. Formally:

$$
\mathrm{P}(H \mid O)=\frac{\mathrm{P}(O \mid H) \mathrm{P}(H)}{\mathrm{P}(O)}
$$

and $\mathrm{P}(H) \approx 0$. Of course, this requires us to assign prior probabilities to hypotheses-and on what basis?
The likelihood principle departs from the influential Bayesian approach. It does not tell you which hypothesis you ought to believe, or which hypothesis is likely to be true. (Sober says that it is called to tell us how observations 'discriminate' between hypotheses. But as far as I can tell, the same can be said of the principle based on posterior probabilities.)

In particular, we get: Observation favours Intelligent Design over Chance if and only if $\mathrm{P}(O \mid \mathrm{ID}) \gg \mathrm{P}(O \mid$ Chance $)$. But we won't be able to conclude whether design is more or less probable than chance. To do that we would have to evaluate the prior probabilities of these hypotheses, and this cannot be done (according to Sober, not according to Bayesianism).

It is useful to think of likelihoods as reflecting the surprisingness of a given event. That is, available observations are much less surprising if ID is true than if Chance is true.

We can now paraphrase the familiar views in terms of the likelihood principle:
Modern science $\mathrm{P}(O \mid$ Darwin $) \gg \mathrm{P}(O \mid$ ID $)$.
Creationism $\mathrm{P}(O \mid \mathrm{ID}) \gg \mathrm{P}(O \mid$ Darwin $)$.
The third way One conclusion is that there is some designer, another conclusion is that there is the perfect designer. The traditional design argument (e.g., Paley's) can only establish the first conclusion.

Alternatives to 'Chance'. ID defenders often represent the issue as a choice between ID and Chance. But the notion of chance is problematic. In the first place, we can think of 'uniform chancy processes'. An obvious example is a casino. If you play long enough, you are highly likely to lose. So likely indeed, that it is an abuse of the word to label your loss 'a matter of chance'. At the same time, your loss is not deterministic. At each step (the result of your each visit to the casino) it is composed of chancy events.

Should biological adaptations be seen as pure chancy processes, totally random, or as uniform chancy processes? The question at present is moot anyway! For the evolutionary alternative is not to be described as a chancy process at all. In an individual organism novel traits arise through random genetic mutations. But whether or not they spread across the population is not a matter of chance. Natural selection (as well as artificial selection) favours some traits and disfavours other. The favoured traits are those conducive to the organism's survival and reproduction. Unfortunately, Sober does not dig here into the details of evolutionary explanation. Instead, he gives an example how an alternative probabilistic hypothesis can replace the hypothesis of pure chance and compete with the hypothesis of intelligent design.
Example 3 (Sex ratio). Empirical evidence suggests that there are more boys than girls born every year. Say that according to the chance hypothesis, the probability that either a boy or a girl is born is $1 / 2$. Then:

$$
\mathrm{P}(B>G \mid \text { Chance })=\mathrm{P}((G>B \mid \text { Chance }) \gg \mathrm{P}(B=G \mid \text { Chance }) .
$$

But $\mathrm{P}(B=G \mid$ Chance $)$ is very small. So $\mathrm{P}(B>G \mid$ Chance $) \approx 1 / 2$ in every given year. So $\mathrm{P}(B>G \mid$ Chance $)<(1 / 2)^{n}$ in n years. There is another piece of evidence, that boys die earlier than girls. So, in order to offset this inequality, the good Providence instituted the uneven sex ratio at birth: it is by design that $B>G$. (Therefore, also, polygamy is wrong.)

But there is an alternative explanation based on natural selection. Here is a simplified sketch (due to Carl Düsing and in part to Darwin). The key idea is to consider three generations: the parental generation, offspring, and grandoffspring. Suppose there are m males and f females in the offspring generation. They produce N individuals in the grandoffspring generation. Then each male and female offspring will respectively produce N / m and N / f individuals in the grandoffspring generation. So the minority sex in the offspring generation will have a higher reproductive success! Thus a parent wishing to maximize his success in the grandoffspring generation will overproduce offspring of the minority sex. Clearly an equilibrium should be reached: this happens when there is an equal distribution of sexes at the age of reproduction. Notice that monogamy is not demanded here: even if occasionally some males will have more than N / m offspring and some will have none, on average the number will be the same.
Remark 4. A more adequate solution is due to Ronald Fisher. It involves an additional idea of parental expenditure. Ignoring fathers, we imagine that a mother has a certain energy to spend on her offspring. Let E_{m} be the energy spent on male offspring and E_{f} be the energy spent on female offspring. We also assume that a mother invests equally in sons and daughters. Then we have: $m E_{m}=f E_{f}$. But since, as Arbuthnot already noticed, male mortality is higher, we have $E_{m}<E_{f}$. Then to preserve the equilibrium we should have $m>f$.
responses to Hume. Hume's argument restated by Sober relies on an analogy between organisms and watches. However, if the Design argument is formulated in terms of likelihoods, then an appeal to analogy is unnecessary.

Similarly, Hume argued that the Design argument is based on induction, and that since inductive inferences are generally suspect, the Design argument should fail. Once again, the likelihood formulation eliminates any appeal to induction.
Remark 5. Refresh your memories on Hume's critique of induction.
Evaluating theid argument. In general, the design argument has two premisses: that $\mathrm{P}(O \mid$ Chance $)$ is very low and that $\mathrm{P}(O \mid \mathrm{ID})$ is higher. Let us see whether $\mathrm{P}(O \mid$ Chance $)$ very low. It is highly probable that the universe has order and adaptation somewhere. But it is highly improbable that the universe has order and adaptation here.

Compare the inverse gambler's fallacy:

$$
\mathrm{P}(6 \star 6 \text { (now }) \mid \text { Many rolls })>P(6 \star 6(\text { now }) \mid \text { One roll })
$$

is false. This is because the rollings of dice are stochastic (or 'Markovian'): their probabilities are insensitive to the state of the system in the past.

But:

$$
\mathrm{P}(6 \star 6 \text { (sometime }) \mid \text { Many rolls })>\mathrm{P}(6 \star 6 \text { (sometime }) \mid \text { One roll })
$$

is true. This result is irrelevant, however: we observe our planet, so the likelihoods of the two hypotheses should be judged equal.

Now, is $\mathrm{P}(O \mid \mathrm{ID})>\mathrm{P}(O \mid$ Chance $)$? We need to make assumptions about the designer. Perhaps he was incompetent and could not create the vertebrate eye. Or perhaps he was not interested. Or perhaps he was. And so forth.

Herein is a lack of analogy with the watch on the heath where we assumed the existence of a human designer with transparent goals and abilities. The moral we are to draw is to assume the existence of such a designer whose goals/abilities we understand.

Gould's panda argument is vulnerable to the same criticism. Pandas have a thumb serving them to peel off bamboo. This thumb is an imperfect tool. This fact sits well with the evolutionary theory: adaptations are often imperfect. So:

$$
\mathrm{P}(\text { Thumb } \mid \mathrm{ID})<\mathrm{P} \text { (Thumb } \mid \text { Evolution }) .
$$

But this assumes that we know why the designer would design such a thumb. I.e. we reason (probabilisticall): the designer should have wanted to make panda's life easy, but the thumb does not make it so, so there is no designer. Sober: the assumption is unjustified, we may be in the dark about the designer's goals. Also: The designer need not be perfectly competent either (as in the Hitchhiker's Guide to the Galaxy).

