Intermediate Logic

Lecture notes

Sandy Berkovski
Bilkent University
Fall 2010

Chapter 5

Predicate calculus: Syntax

In this chapter we begin investigating the properties of predicate calculus. We shall see that, while some concepts and results of propositional calculus straightforwardly carry over to the case of predicate calculus, still many other are significantly generalised or else are completely novel.

5.1 Quantifiers and variables

It is clear that the resources of propositional calculus are inadequate for identifying valid arguments in many areas of discourse. The inference 'If Socrates is male, then he is not female' appears to be a valid one. But all we can do within the limits of H_{s} is to symbolise it as 'If P, then Q ', or perhaps as 'If P, then $\neg Q$ ', but in either case there is no reason why these arguments must be recognised as valid. The apparent validity of our inference derives from a link between Socrates, the property of being female, and the property of being male. That link remains inscrutable so far as we are confined to H_{s}. Thus we must enrich our syntactic and semantic means to talk about objects and relations (recall that properties are unary relations). This will be achieved in predicate calculus.

Some of the elements of predicate calculus should be familiar from the introductory course. Here we start by drawing attention to just one specific issue of philosophical, rather than mathematical, significance - namely, the role of variables - and proceed straightaway to the formal exposition.

The true claim 'The number 9 is less than, or equal, or greater than 0 ' can be paraphrased as a disjunction:

$$
(9<0) \vee(9=0) \vee(9>0)
$$

To write this disjunction in our canonical propositional notation we may simply treat each disjunct as an atomic sentence denoting it by a sentence parameter. But consider another true statement, 'Every real number is less than, or equal to, or greater than 0 '. Here an attempt to ape our disjunction:
$($ Every real number $<0) \vee($ Every real number $=0) \vee($ Every real number $>0)$
fails, since this paraphrase is obviously false. Rather, we have to labour a bit, first representing the original statements as:

Whatever real number is selected, it is either less than, or equal to, or greater than 0 .
Therefore:
Whatever real number is selected, $(($ it $<0) \vee($ it $=0) \vee($ it $>0))$.
However, suppose we advance further and wish to make a claim previously made about 0 about every number. That will be another true claim, since, mathematically, there is nothing unique about 0 in this respect. Then we may say:

> Whatever real number is selected, (every real number is either less than it, or equal to it, or greater than it).

But the parenthetical expression still demands a paraphrase. According to our previous strategy, we may expect the following:

Whatever real number is selected, (whatever real number is selected, ((it $<$ it) \vee

$$
(\text { it }=\text { it }) \vee(\text { it }>\text { it }))) .
$$

This will not do: unless we separate between two selections - that is, two occurrences of 'whatever' in our statement-we will be making a false claim. To distinguish between them, we may resort to indexing. We shall attach the same indices to 'whatever' and to the locutions of 'it' fixed by 'whatever'. Accordingly:

$$
\text { Whatever }_{1} \text { real number is selected, (whatever }{ }_{2} \text { real number is selected, ((it }{ }_{2}<
$$

$$
\left.\left.\left.\mathrm{it}_{1}\right) \vee\left(\mathrm{it}_{2}=\mathrm{it}_{1}\right) \vee\left(\mathrm{it}_{2}>\mathrm{it}_{1}\right)\right)\right)
$$

But instead of indexing it would be more convenient to distinguish the scope of the occurrence of 'whatever' by different letters. Thus, the latest paraphrase will take the form:

$$
\text { Whatever real number } x \text { is selected, (whatever real number } y \text { is selected, }((y<x)
$$

$$
\vee(y=x) \vee(y>x)))
$$

On the other hand, the locution 'whatever entity is selected' is synonymous with the locution 'for all entities'. We further abbreviate 'for all' as ' \forall '. Yet the paraphrase:

$$
\forall x(\forall y((y>x) \vee(y=x) \vee(y<x)))
$$

would be too quick: we have omitted the provision made for real numbers. The remedy is not difficult: the claim 'For all $F \mathrm{~s}, \ldots$ ' may be paraphrased as the claim 'For all x, if x is F, then \cdots '. By inserting the conditional we avoid making claims about any non- F. Hence the correct paraphrase would be as follows:

$$
\forall x(x \text { is a real number } \supset(\forall y(y \text { is a real number } \supset((y>x) \vee(y=x) \vee(y<x)))))
$$

We shall have an opportunity to explore the properties of quantifiers in more detail later on. What is important right now is to notice that the variables as introduced by us have the sole role of cross-referencing the quantifier. The indexing tool we abandoned for the purpose of convenience displayed just that. In this way variables are distinguished from names, or 'individual constants'. This may seem obvious: the whole purpose of moving from the specific claims about 9 and 0 above was in eliminating the names for these numbers in our statements. None the less it is not uncommon to encounter claims, such as 'Take any number-say, 22', or 'Take any politician-say, Tony Blair'. The speaker may go on and predicate properties of the number 22 or Tony Blair. Thus, if the resulting claim has the form ' x is F^{\prime}, x would appear to be a proper name - ither for 22 , or Tony Blair. Such a practice would be logically fallacious for a number of reasons. The simplest fallacy, to cut the story short, is that the original intention of the speaker was to reason about properties of every number or politician, whereas 22 and Tony Blair may not share properties with every number or politician. In general, the use of variables allows us making claims about arbitrary entities, but it does not validate replacing those variables by names of specific entities. (In daily contexts, the speaker is likely to be interpreted as making an inductive inference: by examining the properties of Tony Blair and, say, Jacques Chirac, he leaps to a claim about politicians in general.)

5.2 First-order theory

We shall present the system T_{p} of predicate calculus. To begin with, the above discussion suggests a revision of our concept of signature. We formulate it in the most general way, and will simplify later.

Definition 5.1. Let Σ_{v} be a denumerable set of individual variables. Let $\Sigma_{i p}$ be a denumerable set of individual parameters. Let Σ_{c} be a set of individual constants. Let Σ_{p} be a denumerable set containing i-ary predicate parameters for each $i \geq 0$. Let Σ_{f} be a denumerable set containing i-ary function parameters for each $i \geq 0$. The signature for T_{p} is the set $\Sigma=\Sigma_{v} \cup \Sigma_{i p} \cup \Sigma_{c} \cup \Sigma_{p} \cup \Sigma_{f}$.
Remark. The sets $\Sigma_{v}, \Sigma_{i p}, \Sigma_{c}, \Sigma_{p}$, and Σ_{f} are mutually disjoint.
Predicate parameters having the arity n should be thought as standing for the sentences in the object language that have n blanks. When we wish to identify the predicate, those blanks will be represented by circled numerals (see Exercises for an example). Consequently, an 0 -ary predicate parameter will be nothing but a sentence parameter. Similarly, constants can be thought as 0 -ary function parameters, as we have mentioned already whilst discussing tautologies and contradictions. On occasions, it is convenient to specify the arity of predicates (and functions) explicitly. For an i-ary predicate P_{j} we shall then write ' P_{j}^{i}. .

The sign \forall will stand for the universal quantifier. The existential quantifier will be introduced as an abbreviation. We can now define terms and formulae of our theory as follows.

Definition 5.2. The set \mathbf{T}_{Σ} of terms of the signature Σ for T_{p} is the smallest set of expressions determined as follows:

1. $\Sigma_{v} \cup \Sigma_{i p} \cup \Sigma_{c} \subseteq \mathbf{T}_{\Sigma}$;
2. If $t_{1}, \ldots, t_{n} \in \mathbf{T}_{\Sigma}$ and $f \in \Sigma_{f}$, then $f\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{T}_{\Sigma}$.

Definition 5.3. The set \mathbf{F}_{Σ} of formulae of the signature Σ for T_{p} is then determined by the following rules:

1. If $P \in \Sigma_{p}$ is an 0 -ary predicate parameter, then $P \in \mathbf{F}_{\Sigma}$.
2. If $P \in \Sigma_{p}$ is an n-ary predicate parameter, where $n>0$, and $t_{1}, \ldots, t_{n} \in \mathbf{T}_{\Sigma}$, then $P t_{1} \cdots t_{n} \in \mathbf{F}_{\Sigma}$.
3. If $A \in \mathbf{F}_{\Sigma}$, then $\neg A \in \mathbf{F}_{\Sigma}$.
4. If $A, B \in \mathbf{F}_{\Sigma}$, then $(A \supset B) \in \mathbf{F}_{\Sigma}$.
5. If $A \in \mathbf{F}_{\Sigma}, x \in \Sigma_{v}$, then $\forall x A \in \mathbf{F}_{\Sigma}$.

Remark. Unless explicitly indicated to the contrary, we shall assume that $\Sigma_{f}=\Sigma_{c}=\varnothing$. Note also that each n-ary function $f: X \rightarrow Y$ can be 'represented' by an ($n+1$)-ary predicate as follows:

$$
f\left(x_{1}, \ldots, x_{n}\right)=y \Longleftrightarrow P\left(x_{1}, \ldots, x_{n}, y\right)
$$

where $x_{1}, \ldots, x_{n} \in X, y \in Y$. This will allow us talking about various mathematical structures without using function parameters.

Definition 5.4. Let $\mathbf{S m}_{\Sigma}=\Sigma \cup\{\neg, \supset, \forall,()$,$\} . Then \mathbf{S m}_{\Sigma}$ is the set of symbols of the signature Σ.
An expression of Σ is any string of elements of $\mathbf{S m}_{\Sigma}$. An atomic formula is a formula containing no logical connectives or quantifiers. Similarly to the propositional case, we can now give an interpretation of the complexity of formulae.

Definition 5.5. By the degree $d(A)$ of the formula A we understand the number of occurrences of logical connectives and quantifiers in A, with every atomic formula assigned the degree 0 .

Definition 5.6. For every $A \in \mathbf{F}_{\Sigma}, x \in \Sigma_{v}$, and $a \in \Sigma_{i p}$ we define the formula $A^{x / a}$ as follows:

1. If A is atomic, then $A^{x / a}$ obtains by substituting a for every occurrence of x in A.
2. $(A \supset B)^{x / a}=A^{x / a} \supset B^{x / a}$.
3. $(\neg A)^{x / a}=\neg A^{x / a}$.
4. $(\forall x A)^{x / a}=\forall x A^{x / a}$.
5. $(\forall y A)^{x / a}=\forall y A^{x / a}$.

A closed formula, or a sentence, is a formula A such that, for every $a \in \Sigma_{i p}$ and every $x \in \Sigma_{v}, A^{x / a}=A$.
The notion of substitution may be easier to understand with the aid of the notion of free and bound occurrences of variables. The scope of an occurrence of a quantified variable, i.e. a variable immediately preceded by a quantifier, is the smallest formula following that occurrence.
Example 5.7. $(\forall x P x) \supset(\forall x(Q x y \supset R y))$. Here we identify two occurrences of the universal quantifier...
The variable x has a bound occurrence in the formula A if it either falls within the scope of an occurrence of the quantifier in A, or else is immediately preceded by a quantifier. The variable x has a free occurrence if it is not bound. Then we regard the formula $A^{x / a}$ as a result of substituting a for every free occurrence of x. Equivalently, we can say that x has a free occurrence in A if $A^{x / a}$ is not the same formula as $\neq A$.
Example 5.8. If A is the formula $\forall x P x \supset \forall y Q x y$, then $A^{x / a}=\forall x P x \supset \forall y Q a y$.
Definition 5.9. ' $\exists x A^{x / a} \Longleftrightarrow \Longleftrightarrow{ }^{\prime} \neg \forall x \neg A^{x / a}$.
Remark. Metatheorems on deducibility and the deduction theorem are proved for the Hilbert-type axiomatisation of T_{p} in exactly the same way they are proved for H_{s}.
[Qui51, Bos97, Men64]

Chapter 6

Predicate calculus: Semantics

6.1 Models and satisfiability

We shall now introduce several key notions of the predicate calculus. We start from afar by introducing a very general notion of algebraic system. Intuitively, an algebraic system is a set of objects, the elements of which we use in interpreting predicate parameters or functional parameters.

Definition 6.1. An algebraic system is a triple $\mathfrak{M}=\left\langle M, \Omega_{F}, \Omega_{P}\right\rangle$, where M is a non-empty set of individuals, Ω_{F} is a set of operations on M, and Ω_{P} is a set of predicates on M. If $\Omega_{P}=\varnothing$, then \mathfrak{M} is called an algebra. If $\Omega_{F}=\varnothing$, then \mathfrak{M} is called a model.

Definition 6.2. The set M of the system $\mathfrak{M}=\left\langle M, \Omega_{F}, \Omega_{P}\right\rangle$ is the domain of \mathfrak{M}. Ω_{F} is the operator domain. Ω_{P} is the predicate domain. The cardinality of \mathfrak{M} is the number $|M|$.

Suppose, however, that we have to make claims about the elements of M, Ω_{F}, and Ω_{P}. We shall need a language for making those claims. Thus, an alternative formulation of the notion of algebraic system, albeit a less intuitive one, highlights the role of the signature and the distinction between object-language and metalanguage. Generally speaking, the signature may be finite.

Definition 6.3. An algebraic system of the countable signature Σ is a pair $\mathfrak{M}=\langle M, I\rangle$, where M is a non-empty set of individuals, and I is a mapping defined on M with the following conditions:

1. For every n-ary predicate parameter $P \in \Sigma_{p}, I(P) \subseteq M^{n}$;
2. For every n-ary function parameter $f \in \Sigma_{f}, I(f): M^{n} \rightarrow M$;
3. For every $c \in \Sigma_{c}, I(c) \in M$.

We may explicitly distinguish between symbols (linguistic items) and their interpretations in \mathfrak{M} by writing, for each symbol s, ' \bar{s} ' to denote $I(s)$. Sometimes it may be more convenient to replace I with the list of its values and to write $\mathfrak{M}=\left\langle M ; \overline{P_{1}}, \ldots ; \overline{f_{1}}, \ldots ; \overline{c_{1}}, \ldots\right\rangle$. This notation shows also the equivalence of our two definitions of algebraic system. Moreover, let the arity of $\overline{P_{i}}$ and $\overline{f_{i}}$ be denoted by $n\left(\overline{P_{i}}\right)$ and $n\left(\overline{f_{i}}\right)$ respectively. Then the system \mathfrak{M} is said to be of the type $\left\langle n\left(\overline{P_{1}}\right), \ldots ; n\left(\overline{f_{1}}\right), \ldots\right\rangle$.
Example 6.4. The system $\mathfrak{Z}=\langle Z ;+; \leq\rangle$ has the set of integers as the domain, the binary operation of addition in the set Ω_{F} and the binary predicate '(1) is less or equal to (2)' in the set Ω_{P}. \mathfrak{M} is of the type $\langle 2 ; 2\rangle$.
Remark. In accordance with our earlier remark on representing n-ary functions with $(n+1)$-ary predicates, it is possible to transform algebras (or generally, algebraic systems) into models 'representing' them.

Here we shall only be interested in models. Given a model, we can define a valuation V for sentences of Σ.
Definition 6.5. Let \mathbf{S}_{Σ} be the set of all sentences of the signature Σ. Let $\mathfrak{M}=\left\langle M, \Omega_{P}\right\rangle$. Let $P_{M} \in \Omega_{P}$. Then V is a first-order valuation of \mathbf{S}_{Σ} in the model \mathfrak{M} if the following holds:

1. $V\left(P a_{1} \cdots a_{n}\right)= \begin{cases}1 & \text { if }\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \bar{P} \\ \mathbf{0} & \text { otherwise } .\end{cases}$
2. (a) $V(\neg A)= \begin{cases}\mathbf{1} & \text { if } V(A)=\mathbf{0} \\ \mathbf{0} & \text { if } V(A)=\mathbf{1}\end{cases}$

Table 6.1: Signed tableau processing rules for quantifiers
(b) $V(A \supset B)= \begin{cases}\mathbf{1} & \text { if } V(A)=\mathbf{0} \text { or } V(B)=\mathbf{1} \\ \mathbf{0} & \text { if } V(A)=\mathbf{1} \text { and } V(B)=\mathbf{0} .\end{cases}$
3. $V(\forall x A)= \begin{cases}\mathbf{1} & \text { if } V\left(A^{x / a}\right)=\mathbf{1} \text { for all } a \in M \\ \mathbf{0} & \text { if } V\left(A^{x / a}\right)=\mathbf{0} \text { for at least one } a \in M .\end{cases}$
4. $V(\exists x A)= \begin{cases}\mathbf{1} & \text { if } V\left(A^{x / a}\right)=\mathbf{1} \text { for at least one } a \in M \\ \mathbf{0} & \text { if } V\left(A^{x / a}\right)=\mathbf{0} \text { for all } a \in M .\end{cases}$

We can now define satisfiability and validity.
Definition 6.6. Let $A \in \mathbf{F}_{\Sigma}$. Then A is satisfied, or true, in the model \mathfrak{M} if there is a valuation V of \mathfrak{M} such that $V(A)=1$. (Sometimes it is convenient to indicate this fact as $\mathfrak{M} \models A$.)

Definition 6.7. Let $A \in \mathbf{F}_{\Sigma}$. Then A is valid in the model \mathfrak{M} if for all valuations V of $\mathfrak{M}, V(A)=\mathbf{1}$.
Definition 6.8. Let $A \in \mathbf{F}_{\Sigma}$. Then A is satisfiable if there is a model \mathfrak{M} and a valuation V of \mathfrak{M} such that $V(A)=1$.

6.2 Rules for semantic tableaux

Tableaux have the same application in predicate calculus as they did in sentence calculus. To the earlier rules we add the rules for developing the quantifiers.
Example 6.9. Let us find a proof for $\exists x(P x \vee Q x) \vdash \exists x P x \vee \exists x Q x$:

$$
\begin{aligned}
& \mathbf{T} \exists x(P x \vee Q x) \\
& \mathbf{F} \exists x P x \vee \exists x Q x \\
& \mathbf{F} \exists x P x \\
& \mathbf{F} \exists x Q x \\
& \mathbf{T} P a \vee Q a \\
& \text { FPa } \\
& \text { F } Q a
\end{aligned}
$$

To justify the tableau method, we shall first establish the soundness of tableau proofs.

Definition 6.10. Let $A \in \mathbf{F}_{\Sigma}$ and $\mathfrak{M}=\langle M, I\rangle$. Then the C-sentence $A^{c}=A^{a_{1} / c_{1} \cdots a_{n} / c_{n}}$ is a formula obtained from A by replacing each occurrence of individual parameters with individual constants c_{1}, \ldots, c_{n} such that $\overline{c_{1}}, \ldots, \overline{c_{n}} \in M$.

The notions of satisfiability and simultaneous satisfiability naturally carry over to the case of A^{c}. Let us say further that a tableau \mathscr{T} is simultaneously satisfiable if at least one path of it is simultaneously satisfiable.

Proposition 6.11. Let \mathscr{T} and \mathscr{T}^{\prime} be tableaux such that \mathscr{T}^{\prime} is an immediate extension of \mathscr{T}. Then, if \mathscr{T} is simultaneously satisfiable, \mathscr{T}^{\prime} is also simultaneously satisfiable.

Proof. We should consider cases for each of the tableau rules. Let us consider only selected rules.

1. Suppose \mathscr{T}^{\prime} is obtained from \mathscr{T} by applying the rule

$$
\mathbf{T} A \supset B
$$

$\mathbf{F} A \quad \mathbf{T} B$
to the path θ of \mathscr{T}. Since \mathscr{T} is simultaneously satisfiable, it contains a simultaneously satisfiable branch τ. If $\tau \neq \theta$, then τ is in \mathscr{T}^{\prime}, and so \mathscr{T}^{\prime} is simultaneously satisfiable. Suppose $\tau=\theta$. Then θ is satisfiable. Let the model $\mathfrak{M}=\langle M, I\rangle$ simultaneously satisfy θ. Then, for a valuation V of \mathfrak{M}, we have that $V\left((A \supset B)^{c}\right)=\mathbf{1}$, where every $c_{i} \in M$. Thus $V\left((\neg A)^{c}\right)=\mathbf{1}$ or $V\left(B^{c}\right)=\mathbf{1}$. Clearly, then, the valuation V simultaneously satisfies either the pair $\langle\theta, \neg A\rangle$, or the pair $\langle\theta, B\rangle$. It follows that \mathscr{T}^{\prime} is simultaneously satisfiable, as at least one of its paths is simultaneously satisfiable.
2. Suppose \mathscr{T}^{\prime} is obtained from \mathscr{T} by applying the rule

$\mathbf{T} A^{x / a}$
to the path θ of \mathscr{T}. Since \mathscr{T} is simultaneously satisfiable, it contains a simultaneously satisfiable branch τ. If $\tau \neq \theta$, then τ is in \mathscr{T}^{\prime}, and so \mathscr{T}^{\prime} is simultaneously satisfiable. Suppose $\tau=\theta$. Then θ is satisfiable. Let the model $\mathfrak{M}=\langle M, I\rangle$ simultaneously satisfy θ. Then, for a valuation V of \mathfrak{M}, we have that $V\left(\forall x(A)^{c}\right)=V\left((\forall x A)^{c}\right)=\mathbf{1}$, where every $c_{i} \in M$. Hence, in particular, \mathfrak{M} satisfies $A^{x / a}$. Thus \mathscr{T}^{\prime} is simultaneously satisfiable.

Proposition 6.12 (Soundness for tableaux). Let $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of sentences with parameters. If there is a closed finite tableau starting with A_{1}, \ldots, A_{n}, then Γ is not simultaneously satisfiable.

Proof. Let \mathscr{T} be a tableau starting with A_{1}, \ldots, A_{n}. Then there is a sequence of tableaux $\mathscr{T}_{1}, \mathscr{T}_{2}, \ldots, \mathscr{T}_{n}$ such that \mathscr{T}_{1} has the sole branch $\left\langle A_{1}, \ldots, A_{n}\right\rangle, \mathscr{T}_{n}=\mathscr{T}$, and for each $0<i<n, \mathscr{T}_{i+1}$ is an immediate extension of \mathscr{T}_{i}. Suppose, for reductio, that $\left\{A_{1}, \ldots, A_{n}\right\}$ is simultaneously satisfiable. Then \mathscr{T}_{1} is also simultaneously satisfiable. Using induction on i and Proposition 6.11 we derive that, for each $0<i<n+1, \mathscr{T}_{i}$ is satisfiable. But this is impossible, as \mathscr{T}_{n} is closed by assumption. Hence $\left\{A_{1}, \ldots, A_{n}\right\}$ is not simultaneously satisfiable.

6.3 Logical equivalences

Before we show completeness of our method, let us record some useful equivalences of first-order calculus.

Definition 6.13. Let $A \in \mathbf{F}_{\Sigma}$ and let x_{1}, \ldots, x_{n} be the variables occurring freely in A and a_{1}, \ldots, a_{n} be the parameters not occurring in A. Let $A^{a}=A^{x_{1} / a_{1} \cdots x_{n} / a_{n}}$. Then A is satisfiable if and only if A^{a} is satisfiable. And A is logically valid if and only if A^{a} is logically valid.

We can now register some properties of satisfiability and validity.
Proposition 6.14. Let $A \in \mathbf{F}_{\Sigma}$. Then A is logically valid if and only if $\neg A$ is not satisfiable. And A is logically satisfiable if and only if $\neg A$ is not not logically valid.

Proof. Straightforward from definitions.
Proposition 6.15. Let $A \in \mathbf{F}_{\Sigma}$. Then A is logically valid if and only if $\forall A$ is logically valid. A is satisfiable if and only if $\exists x A$ is satisfiable.

Proof. Exercise.
Definition 6.16. Let $A, B \in \mathbf{F}_{\Sigma}$. Then A is logically equivalent to $B(A \simeq B)$ if and only if $A \leftrightarrow B$ is logically valid.

Proposition 6.17. Let $A, B \in \mathbf{F}_{\Sigma}$ such that A and B contain a free occurrence of x. If $A \simeq B$, then $\forall x A \simeq \forall x B$ and $\exists x A \simeq \exists x B$.

Proof. Let the formula A contain the free occurrences of the variables $x, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}$, and let B contain the free occurrences of the variables $x, x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{l}$, so that the common free variables are x, x_{1}, \ldots, x_{n}. Since $A \simeq B$, on any arbitrary model $\mathfrak{M}=\langle M ; \cdots\rangle$ the formula A will be logically valid only for those arrays $\left\langle\overline{x_{1}}, \ldots, \overline{x_{n}}, \overline{y_{1}}, \ldots, \overline{y_{k}}, \overline{z_{1}}, \ldots, \overline{z_{l}}\right\rangle$, for which B is also logically valid. But this means precisely that $\forall x A \simeq \forall x B$.

The case for the existential quantifier is proven analogously.
Let us now formulate important logical equivalences for T_{p}. We shall split them into four groups.
Proposition 6.18. Swapping quantifiers:

1. $\forall x \forall y P x y \simeq \forall y \forall x P x y$.
2. $\exists x \exists y P x y \simeq \exists y \exists x P x y$.

Proof. To show the first equivalence, we notice that $\forall x \forall y P x y$ is true just in case $P x y$ is logically valid. The second equivalence is left as an exercise.

Remark. Another way of putting this claim is as follows:

1. $\forall x A \simeq A$;
2. $\exists x A \simeq A$,
assuming in both cases that x does not occur freely in A.
Proposition 6.19. Linking existential and universal quantifiers:
3. $\neg \forall x A \simeq \exists x \neg A$;
4. $\neg \exists x A \simeq \forall x \neg A$.

Proof. To prove 1, we notice that if the formula $\neg \forall x A$ is true, then $\forall x A$ is false. Thus the formula A is not logically valid. But then $\neg A$ is satisfiable. That is, for some \bar{x} it is true. Hence, $\exists x \neg A$ is true. The other direction is proved similarly.

To prove 2, we notice that $\neg \exists x A$ is true just in case $\exists x A$ is false. This means that A is not satisfiable. And this is so just in case $\neg A$ is logically valid. And $\neg A$ is logically valid just in case $\forall x \neg A$ is logically valid.

Remark. In the finite case, there is an analogy here with de Morgan's laws. The proved proposition may be regarded as a generalisation into the infinite case.

Proposition 6.20. Let $A \in \mathbf{F}_{\Sigma}$ such that x does not occur freely in it. The distribution rules for quantifiers are as follows:

$$
\text { 1. } \forall x(A \wedge P x) \simeq A \wedge \forall x P x \text {; }
$$

2. $\forall x(A \vee P x) \simeq A \vee \forall x P x$;
3. $\exists x(A \wedge P x) \simeq A \wedge \exists x P x$;
4. $\exists x(A \vee P x) \simeq A \vee \exists x P x$;
5. $\exists x(A \supset P x) \simeq A \supset \exists x P x$;
6. $\exists x(P x \supset A) \simeq \forall x P x \supset A$;
7. $\forall x(A \supset P x) \simeq A \supset \forall x P x$;
8. $\forall x(P x \supset A) \simeq \exists x P x \supset A$.

The same claims hold if we replace the formula Px by an arbitrary formula B.
Proof. All these claims may be verified by examining the relevant tableaux.
Proposition 6.21. Let $A \in \mathbf{F}_{\Sigma}$. The rules for renaming bound variables (or rules of relettering) are as follows:

1. $\forall x A \simeq \forall y A^{y / a}$;
2. $\exists x A \simeq \exists y A^{y / a}$.

Proof. By examining the relevant tableaux.

6.4 Prenex normal forms

We shall now prove that any formula can be transformed into prenex normal form. We shall need several auxiliary notions and a lemma.

Definition 6.22. The notion of immediate subformulae is determined according to the following rules:

1. A and B are immediate subformulae of $A \wedge B, A \vee B, A \supset B$, whilst A is an immediate subformula of $\neg A$.
2. For any parameter a, variable x, and formula $A, A^{x / a}$ is an immediate subformula of $\forall x A$ and of $\exists x A$.

Definition 6.23. Subformulae are determined by the following rules:

1. If A is an immediate subformula of B, or $A=B$, then A is a subformula of B;
2. If A is a subformula of B, and B is a subformula of C, then A is a subformula of C.

Proposition 6.24. Let $A \in \mathbf{F}_{\Sigma}$. If we replace its subformula B by a subformula C, such that $B \simeq C$, then the resulting formula A^{\prime} will be such that $A \simeq A^{\prime}$.

Proof. Omitted. Hint: we should induce on the complexity of A.
Definition 6.25. Let $A \in \mathbf{F}_{\Sigma}$. Then A is said to be in prenex normal form if A has the form $Q_{1} x_{1} \cdots Q_{n} x_{n} B$, where each Q_{i} is a quantifier \forall or $\exists, x_{i} \neq x_{j}$ if $i \neq j$, and B contains no quantifiers.

Proposition 6.26. For each $A \in \mathbf{F}_{\Sigma}$ there is $B \in \mathbf{F}_{\Sigma}$ such that $A \simeq B$ and B is in prenex normal form.
Proof. To facilitate understanding, let us first state the proof informally. We shall use the logical equivalences for T_{p} established earlier. To begin with, relying on de Morgan laws, we eliminate all symbols for material conditionals and bi-conditionals. To the resulting formula we shall apply two types of transformation. In the first transformation, we find a subformula A^{\prime} of A having the form of either $C \wedge \forall x B$, or $C \vee \forall x B$, or $C \wedge \exists x B$, or $C \vee \exists x B$. For instance, let $A^{\prime}=C \wedge \forall x B$ (other cases are done analogously). If C has a free occurrence of x, then we replace x by some z not occurring in A. If not, then replace A^{\prime} by $\forall x(C \wedge B)$. We repeat this procedure the required number of times. In the second type of transformation, we replace the subformulae having the form $\neg \forall x B$ or $\neg \exists x B$ by $\exists x \neg B$ or $\forall x \neg B$ respectively. In this way we are able to transform A into $Q_{1} x_{1} \cdots Q_{n} x_{n} B$ with B containing no quantifiers.

The same procedure allows a formal presentation along the following lines. Let $A \in \mathbf{F}_{\Sigma}$. Let $\lambda(A) \in$ $\{0,1,2, \ldots\}$ be the number of occurrences of the quantifiers in A. We shall use induction on n and prove
that for a formula A with $\lambda(A) \leq n$ there is $B \in \mathbf{F}_{\Sigma}$ such that B is in prenex normal form, and $A \simeq B$, $\lambda(A)=\lambda(B)$, and the number of the free occurrences of variables in B is equal to the number of the free occurrences of variables in A.

Thus let $n=0$. In this case, we may let B to be just the formula A. Now let $n>0$. Suppose $\lambda(A) \leq n$. The quantifier-free case is trivial. Then let A contain quantifiers. If A has the form $\neg C$ and $\lambda(A)>0$, then $\lambda(C)=\lambda(A)>0$. By induction hypothesis there is a formula of the form $Q x D$ which is a prenex normal form for C and where $\lambda(D)=\lambda(A)$ and where D may contain quantifiers. Introduce the notation $\forall^{-1}=\exists$ and $\exists^{-1}=\forall$. We have that $A \simeq Q^{-1} x \neg D$. Now, since $\lambda(\neg D)=\lambda(Q x D)=\lambda(Q x A)-1 \leq n-1$, there is a formula $B \simeq \neg D$ which is in prenex normal form and is such that $\lambda(B)=\lambda(\neg D)$. By our equivalences above, $Q^{-1} x B \simeq A$ and $Q^{-1} x B$ satisfies the properties of the prenex normal form for A.

The proof w.r.t. the number of free variables is left as an exercise.
Example 6.27. Let us bring the formula $\neg \exists y \neg \exists u((\exists x P x y z \supset \forall x R x y) \wedge \neg \forall z P z u z)$ to a prenex normal form:

$$
\begin{aligned}
& \neg \exists y \neg \exists u((\exists x P x y z \supset \forall x R x y) \wedge \neg \forall z P z u z) \simeq \\
& \forall y \neg \neg \exists u((\neg \exists x P x y z \vee \forall x R x y) \wedge \exists z \neg P z u z) \simeq \\
& \forall y \exists u((\forall x \neg P x y z \vee \forall t R t y) \wedge \exists v \neg P v u v) \simeq \\
& \forall y \exists u(\forall t(\forall x \neg P x y z \vee R t y) \wedge \exists v \neg P v u v) \simeq \\
& \forall y \exists u(\forall t \forall x(\neg P x y z \vee R t y) \wedge \exists v \neg P v u v) \simeq \\
& \forall y \exists u \forall t \forall x((\neg P x y z \vee R t y) \wedge \exists v \neg P v u v) \simeq \\
& \forall y \exists u \forall t \forall x \exists v((\neg P x y z \vee R t y) \wedge \neg P v u v) .
\end{aligned}
$$

6.5 Skolem forms

There is a common mathematical practice of picking elements depending on the prior choice of some other elements. For instance, if we have shown that for each x there is y such that $\phi(x, y)$, then it is natural to introduce a function f^{1} picking y for each x. We will then replace $\phi(x, y)$ with $\phi(x, f(x))$. Such a technique calls for the employment of a special device.

Consider a prenex formula $A \in \mathbf{F}_{\Sigma}$. It contains pairwise distinct variables x_{1}, \ldots, x_{n}, quantifiers Q_{1}, \ldots, Q_{n}, and a quantifier-free formula $B \in \mathbf{F}_{\Sigma}$. Then we can first identify the indices of the existential quantifiers: $\left\{j_{1}, \ldots, j_{i}, \ldots, j_{p} \mid Q_{j_{i}}=\exists, 1 \leq i \leq n\right\}$. Given such a set, we can now expand the signature Σ into Σ_{Sk}^{A} by adding p new symbols for parameters or functions. Those will be symbols for Skolem functions (sometimes also called 'Herbrand functions') associated with A. We may also compute the arity of the particular symbol f_{h}. For $1 \leq h \leq p$, its arity will equal the number of times the universal quantifier occurs to the left of $Q_{j_{h}}$ in the prefix of A. That would be exactly the number $j_{h}-h$. We also note that constants may be regarded as 0 -ary function symbols. Therefore, for f_{h} to be a constant, we require that $j_{h}=h$, or equivalently, that the first h quantifications be existential.
Example 6.28. Let the prefix of A be:

$$
\forall x_{0} \forall x_{1} \forall x_{2} \exists x_{3} \exists x_{4} \forall x_{5} \exists x_{6} \forall x_{7} \forall x_{8} \exists x_{9} \forall x_{10}
$$

Then we expand Σ into Σ_{Sk}^{A} by adding four new function symbols $f_{1}, f_{2}, f_{3}, f_{4}$, whose respective arities will be $3,3,4,6$.

We can now build the $S k o l e m$ form $A_{\text {Sk }}$ of the formula A. Obviously it will be a prenex formula containing only universal quantifiers. Let u_{h} be a term of Σ_{Sk}^{A} consisting of the function symbol f_{h} followed by $j_{h}-h$ universally quantified variables such that they occur to the left of the variable $x_{j_{h}}$ in the prefix of the formula A. In general, u_{h} will take the form:

$$
f_{h} x_{1} x_{2} \cdots x_{j_{1}-1} x_{j_{1}+1} \cdots x_{j_{2}-1} x_{j_{2}+1} \cdots x_{j_{h-1}-1} x_{j_{h-1}+1} \cdots x_{j_{h}-1}
$$

Then, for each $1 \leq h \leq n$ we replace each occurrence of $x_{j_{h}}$ in B by the term u_{h}. And in front of this formula we put the prefix of A from which each occurrence of the existential quantifier has been deleted.
Example 6.29. Suppose the signature Σ contains predicate parameters P^{1} and R^{2}. Consider $A \in \mathbf{F}_{\Sigma}$:

$$
\exists x_{0} \exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \forall x_{5} \exists x_{6}\left(\left(R x_{0} x_{2} \wedge P x_{5}\right) \supset\left(R x_{6} x_{2} \vee\left(R x_{1} x_{5} \wedge R x_{4} x_{3}\right)\right)\right) .
$$

The signature Σ_{Sk}^{A} will then contain four new symbols: two constants f_{1} and f_{2}, a unary function parameter f_{3} and a ternary function parameter f_{4}. The formula A_{Sk} will take the form:

$$
\forall x_{2} \forall x_{4} \forall x_{5}\left(\left(R f_{1} x_{2} \wedge P x_{5}\right) \supset\left(R f_{4}\left(x_{2}, x_{4}, x_{5}\right) x_{2} \vee\left(R f_{2} x_{5} \wedge R x_{4} f_{3}\left(x_{2}\right)\right)\right)\right)
$$

We must keep in mind that A_{Sk} belongs to a richer signature than A. Hence it is wrong to say that A is equivalent to its Skolem form. What is true, however, is that when A is considered as a formula belonging to Σ_{Sk}^{A}, then it will be semantically entailed by its Skolem form.
Example 6.30. Let us illustrate the claim of entailment. Let A be the formula $\forall x_{0} \exists x_{1} R x_{0} x_{1}$. We obtain its Skolem form by adding the function parameter g to its signature Σ. The formula A_{Sk} will be $\forall x_{0} R x_{0} g\left(x_{o}\right)$. Let $\mathfrak{M}=\langle M ; R, g\rangle$ be the algebraic system such that $\mathfrak{M} \vDash A_{\mathrm{Sk}}$. Thus we have that for every $a \in M$ we have that $\langle a, g(a)\rangle \in R$. But this means that $\mathfrak{M} \models A$. Therefore, $A_{\mathrm{Sk}} \vDash A$.

Skolem functions and Skolem forms have an interesting application in proof theory, as we shall see later in our discussion of Gentzen systems. A special case of Skolem functions is also used in one of the proofs of first-order completeness. But their most vital role belongs in model theory. One important fact there is that for a closed formula to be satisfiable it is necessary and sufficient that its Skolem form be satisfiable. Most of these applications will fall outside the scope of our concerns. Here we shall only formulate a basic property of Skolem forms:

Proposition 6.31. Let y_{1}, \ldots, y_{n} be pairwise distinct variables and let $A \in \mathbf{F}_{\Sigma}$ be a prenex formula with free occurrences of y_{1}, \ldots, y_{n}. Then the formula $A_{\mathrm{Sk}} \supset A$ of the signature Σ_{Sk}^{A} is valid.

Proof. To be supplied.

6.6 Completeness for tableaux

We now resume our enquiry into the completeness of the tableau method. Let M be a domain of individuals and let Γ be a set of signed C-sentences (which, we recall, should be regarded as closed C-formulae) associated with it. We say that Γ is closed if it contains a conjugate pair of C-sentences. Of particular interest to us will be those sets of C-sentences where, so to speak, all the sentences have been processed according to the tableau rules. Thus:

Definition 6.32. Let Γ be a set of signed C-sentences. Then Γ is well-developed on M if Γ obeys the rules for semantic tableaux, so that the following conditions hold:

1. If $\mathbf{T} \neg A \in \Gamma$, then $\mathbf{F} A \in \Gamma$, and if $\mathbf{F} \neg A \in \Gamma$, then $\mathbf{T} A \in \Gamma$;
2. If $\mathbf{T} A \wedge B \in \Gamma$, then $\mathbf{T} A \in \Gamma$ and $\mathbf{T} B \in \Gamma$, and if $\mathbf{F} A \wedge B \in \Gamma$, then either $\mathbf{F} A \in \Gamma$ or $\mathbf{F} B \in \Gamma$;
3. If $\mathbf{T} A \vee B \in \Gamma$, then either $\mathbf{T} A \in \Gamma$ or $\mathbf{T} B \in \Gamma$, and if $\mathbf{F} A \wedge B \in \Gamma$, then $\mathbf{F} A \in \Gamma$ and $\mathbf{F} B \in \Gamma$;
4. If $\mathbf{T} A \supset B \in \Gamma$, then either $\mathbf{F} A \in \Gamma$ or $\mathbf{T} B \in \Gamma$, and if $\mathbf{F} A \wedge B \in \Gamma$, then $\mathbf{T} A \in \Gamma$ and $\mathbf{F} B \in \Gamma$;
5. (The condition for the bi-conditional is left as an exercise.)
6. If $\mathbf{T} \exists x A \in \Gamma$, then $\mathbf{T} A^{x / a} \in \Gamma$ for at least one $a \in M$, and if $\mathbf{F} \exists x A \in \Gamma$, then $\mathbf{F} A^{x / a} \in \Gamma$ for all $a \in M$;
7. If $\mathbf{T} \forall x A \in \Gamma$, then $\mathbf{T} A^{x / a} \in \Gamma$ for all $a \in M$, and if $\mathbf{F} \forall x A \in \Gamma$, then $\mathbf{F} A^{x / a} \in \Gamma$ for at least one $a \in M$.
(Well-developed sets are called 'Hintikka sets' in [Smu68].)
To prove completeness, we shall first establish several lemmas.
Proposition 6.33 (Hintikka's Lemma). Let Γ be a set of signed C-sentences. If Γ is well-developed on M and open, then Γ is simultaneously satisfiable.

Proof. Let us assume that Γ is well-developed on M and open. Consider a model $\mathfrak{M}=\langle M, I\rangle$ of the signature Σ, such that for any predicate parameter $P^{n} \in \Sigma_{p}, \overline{P^{n}}=\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle \in M^{n} \mid \mathbf{T} P a_{1} \cdots a_{n} \in \Gamma\right\}$. We now claim that for any C-sentence A the following holds:
i. If $\mathbf{T} A \in \Gamma$, then $V(A)=\mathbf{1}$;
ii. If $\mathbf{F} A \in \Gamma$, then $V(A)=\mathbf{0}$.

The proof should be by induction on the complexity of A. As the basic step, we consider the formula A such that $d(A)=0$. The inductive hypothesis will be that if $d(A)>0$, then for any formula B such that $d(B)<d(A)$ our claims hold. We shall have to consider all the cases corresponding to each of the tableau rules. Let us consider here some of them, and the rest will be left as an exercise.

1. Let $d(A)=0$. Then A will have the form $P a_{1} \cdots a_{n}$.
i. If $\mathbf{T} P a_{1} \cdots a_{n} \in \Gamma$, then we already we have that $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \overline{P^{n}}$, and so it follows that $V\left(P a_{1} \cdots a_{n}\right)=1$.
ii. If $\mathbf{F} P a_{1} \cdots a_{n} \in \Gamma$, then we already we have that $\left\langle a_{1}, \ldots, a_{n}\right\rangle \notin \overline{P^{n}}$, and so it follows that $V\left(P a_{1} \cdots a_{n}\right)=\mathbf{0}$.
2. Suppose $d(A)>0$ and A has the form $\neg B$. Then $d(A)>d(B)$, and so the inductive hypothesis holds for B.
3. Suppose $d(A)>0$ and A has the form $B \wedge C$. Then $d(A)>d(B)$ and $d(A)>d(C)$, and so the inductive hypothesis holds for B and C.
i. If $\mathbf{T} B \wedge C \in \Gamma$, then, since Γ is well-developed, we already we have that $\mathbf{T} B, \mathbf{T} C \in \Gamma$, and so it follows that $V(B)=V(C)=\mathbf{1}$. Hence $V(B \wedge C)=\mathbf{1}$.
ii. If $\mathbf{F} B \wedge C \in \Gamma$, then we already we have that $\mathbf{F} B \in \Gamma$ or $\mathbf{F} C \in \Gamma$, and so it follows that either $V(B)=\mathbf{0}$ or $V(C)=\mathbf{0}$. Hence $V(B \wedge C)=\mathbf{0}$.
4. Suppose $d(A)>0$ and A has the form $\exists x B$. Then for all $a \in M$ we have $d\left(B^{x / a}\right)<d(A)$, and so the inductive hypothesis holds for $B^{x / a}$.
5. Suppose $d(A)>0$ and A has the form $\forall x B$. Then for all $a \in M$ we have $d\left(B^{x / a}\right)<d(A)$, and so the inductive hypothesis holds for $B^{x / a}$.

For the following lemma we let $N=\left\{a_{1}, \ldots, a_{n}, \ldots\right\}$ be a set of parameters.
Proposition 6.34. Let \mathscr{T}_{0} be a finite tableau. By applying tableau rules it is possible to extend \mathscr{T}_{0} to a possibly infinite tableau \mathscr{T} such that every closed path of \mathscr{T} is finite and every open path of it is well-developed on N.

Proof. We construct an array of finite extensions of $\mathscr{T}_{0}: \mathscr{T}_{1}, \mathscr{T}_{2}, \ldots, \mathscr{T}_{i}, \ldots$, If for some i the tableau \mathscr{T}_{i} is closed, then the procedure halts and we let $\mathscr{T}=\mathscr{T}_{i}$. But in any case we may set $\mathscr{T}=\mathscr{T}_{\infty}=\bigcup_{i=0}^{\infty} \mathscr{T}_{i}$.

We proceed as follows. Let us call the node $X \in \mathscr{T}_{0}$ 'semi-universal', if it has the form $\mathbf{T} \forall x A$ of $\mathbf{F} \exists x A$. Suppose we have constructed \mathscr{T}_{i}. Then for each semi-universal node $X \in \mathscr{T}_{i}$ and each $n \leq i$, we apply the relevant tableau rule to extend each open path of \mathscr{T}_{i} containing X by $\mathbf{T} A^{x / a_{n}}$ or $\mathbf{F} A^{x / a_{n}}$. Let \mathscr{T}_{i+1} be the tableau obtained as a result. Then for each node X of \mathscr{T}_{i+1} which is not semi-universal we extend each open path containing X by applying the relevant tableau rule. And then again repeat the procedure for the finite tableau \mathscr{T}_{i+2}. Therefore, a closed path is never extended, so that all closed paths of \mathscr{T}_{∞} are finite. It is also clear from our construction that each open path of \mathscr{T}_{∞} is well-developed on N. Therefore, \mathscr{T}_{∞} has the desired properties.

Finally, let us prove another lemma related to the properties of trees generally. Recall that in a finitely generated tree each node has finitely many successors (i.e. 'immediate' successors).

Proposition 6.35 (König's Lemma). Let \mathscr{T} be a finitely generated tree with infinitely many nodes. Then \mathscr{T} contains at least one infinite path.

Proof. Let \mathscr{T}_{x} be the set of all nodes $x \in \mathscr{T}$ such that x has infinitely many descendants (i.e. both 'immediate' and non-'immediate' successors). Then \mathscr{T}_{x} is a sub-tree of \mathscr{T}. Each $x \in \mathscr{T}_{x}$ will have at least one successor. Let x_{1} be the root of \mathscr{T}. By assumption, since \mathscr{T} is infinite, the root will have infinitely many descendants. If all of the successors of x_{1} have finitely many descendants, then x_{1} would have had finitely many descendantswhich is false. Hence there is at least one successor of x_{1} which has infinitely many descendants. Let it be x_{2}. We thus construct inductively a sequence x_{1}, x_{2}, \ldots, . Clearly such a sequence will constitute an infinite path of \mathscr{T}.

We are now in a position to prove completeness. Similarly to the propositional case (Proposition 4.47), we are going to connect the semantic notion of validity with the syntactic notion of provability. Recall that the provability of A by the tableau method would mean that there is a closed tableau with $\mathbf{F} A$ at the root.

No need for the axiom of choice

Proposition 6.36 (Completeness). Let $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\}$ a set of sentences with parameters. If Γ is not simultaneously satisfiable, then there is a finite closed tableau with Γ at the root.

Proof. By Proposition 6.34 there is a tableau \mathscr{T} such that every closed path of it is finite and every open path of it is well-developed on M. If \mathscr{T} is closed, then by König's Lemma \mathscr{T} is finite. Suppose \mathscr{T} is open. Let Δ be its open path. Then Δ is well-developed. But by Hintikka's Lemma Δ is simultaneously satisfiable in M. Since $\Gamma \subseteq \Delta, \Gamma$ is simultaneously satisfiable in M.

The following claims are obtained as simple corollaries of the completeness result as stated above.
Proposition 6.37 (Löwenheim). Let $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\}$ a set of sentences with parameters. If Γ is simultaneously satisfiable, then it is simultaneously satisfiable in a countable domain.

Proof. Follows from the proof of Proposition 6.36.
Proposition 6.38. Let $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\}$ a set of sentences with parameters. Γ is not simultaneously satisfiable if and only if there exists a finite closed signed tableau starting with $\mathbf{T} A_{1}, \ldots, \mathbf{T} A_{k}$.

Proposition 6.39. The sentence A is logically valid if and only if there exists a finite closed signed tableau starting with $\mathbf{F} A$.

Proposition 6.40. The sentence B is a logical consequence of A_{1}, \ldots, A_{k} if and only if there exists a finite closed signed tableau starting with $\mathbf{T} A_{1}, \ldots, \mathbf{T} A_{k}, \mathbf{F} B$.

We shall now prove the compactness theorem for predicate calculus, a much deeper result than compactness for propositional calculus. It was originally proven by Mal'cev, of course using different techniques. We again prove it for the countable case, since the uncountable case invokes the axiom of choice.

Proposition 6.41 (Compactness). Let Γ be a countably infinite set of first-order sentences. Then Γ is simultaneously satisfiable if and only if each finite subset of Γ is simultaneously satisfiable.

Proof. Let $\Gamma=\left\{A_{0}, A_{1}, \ldots, A_{i}, \ldots\right\}$. We start by letting \mathscr{T}_{0} be the empty tableau. Suppose we have constructed \mathscr{T}_{i}. Extend \mathscr{T}_{i} to \mathscr{T}_{i}^{\prime} by appending A_{i} to each open path of \mathscr{T}_{i}. Since $\left\{A_{0}, A_{1}, \ldots, A_{i}\right\}$ is simultaneously satisfiable, \mathscr{T}_{i}^{\prime} has at least one open path. Now extend \mathscr{T}_{i}^{\prime} to \mathscr{T}_{i+1} and then to \mathscr{T}_{i+2} as in the proof of Proposition 6.34. Finally we let $\mathscr{T}=\mathscr{T}_{\infty}=\bigcup_{i=0}^{\infty} \mathscr{T}_{i}$. We have that every closed path of \mathscr{T} is finite, and every open path of \mathscr{T} is well-developed on M. Note also that \mathscr{T} is an infinite, finitely branching tree. By König's Lemma we let Γ^{\prime} be an infinite path in \mathscr{T}. Then Γ^{\prime} is well-developed on M and $\Gamma \subseteq \Gamma^{\prime}$. By Hintikka's Lemma, Γ^{\prime} is simultaneously satisfiable. Hence Γ is simultaneously satisfiable.

We can now prove another well-known theorem which strengthens the result of Proposition 6.37.
Proposition 6.42 (Skolem-Löwenheim). Let Γ be a countably infinite set of first-order sentences. If Γ is simultaneously satisfiable, then Γ is simultaneously satisfiable in a countable domain.

Proof. Follows from the proof of the compactness theorem. Notice that Γ is well-developed in the countably infinite domain M, and therefore, simultaneously satisfiable on it.

Let us now go back to the completeness result we have obtained. It appears as though the tableau method provides a test for logical validity of sentences of the predicate calculus. Unfortunately, the test would only be partially effective. If a sentence A is logically valid, we will certainly find a finite closed tableau starting with F A. But if A is not logically valid, we will not necessarily find a finite tableau to show this.
Example 6.43. Consider the formula:

$$
A: \forall x \exists y P x y \wedge \forall x \forall y(P x y \supset \neg P y x) \wedge \forall x \forall y \forall z(P x y \supset(P y z \supset P x z)) .
$$

This formula is satisfiable on an infinite model, but is not satisfiable on any finite one. Consider $\mathfrak{M}=\langle\{0,1,2, \ldots\} ; \overline{<}\rangle$. Clearly $\mathfrak{M} \models A$. To see that A is not satisfiable on a finite model, let $\mathfrak{M}=\langle M ; \bar{P}\rangle$ such that $\mathfrak{M} \models A$. Note that $V(P a a)=\mathbf{0}$ for any $\bar{a} \in M$. Let $\overline{a_{0}} \in M$. Now select $\overline{a_{1}} \in M$ such that $V\left(P a_{0} a_{1}\right)=\mathbf{1}$. Then select $\overline{a_{2}} \in M$ such that $V\left(P a_{1} a_{2}\right)=1$. By repeating the process we get a sequence $\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$. All the members of this sequence are different: if $i<j$, then $V\left(P\left(a_{i} a_{i+1}\right)\right)=V\left(P\left(a_{i+1} a_{i+2}\right)\right)=\cdots=V\left(P\left(a_{j-1} a_{j}\right)\right)=\mathbf{1}$. Since $\mathfrak{M} \vDash \forall x \forall y \forall z(P x y \supset(P y z \supset P x z))$, we have that $V\left(P\left(a_{i} a_{j}\right)\right)=1$. So $a_{i} \neq a_{j}$. Therefore, M is (countably) infinite.

The same conclusion may be reached by examining the tableau for A in Figure 6.1. Its infinite open path gives rise (see the proof of Proposition 6.33) to an infinite model, such as \mathfrak{M} above.

$$
\begin{gathered}
\mathbf{T} \forall x \exists y P x y \\
\mathbf{T} \forall \forall \forall y(P x y \supset \neg P y x) \\
\mathbf{T} \forall x \forall y \forall z(P x y \supset(P y z \supset P x z)) \\
\mathbf{T} \exists y P a_{1} y \\
\mathbf{T} P a_{1} a_{2} \\
\\
\mathbf{T} \forall y\left(P a_{1} y \supset \neg P y a_{1}\right) \\
\mathbf{T} P a_{1} a_{2} \supset \neg P a_{2} a_{1} \\
\\
\mathbf{F} P a_{1} a_{2} \quad \mathbf{T} \neg P a_{2} a_{1} \\
\\
\mathbf{T} \exists y P a_{2} y \\
\mathbf{T} P a_{2} a_{3} \\
\vdots \\
\mathbf{T} \neg P a_{3} a_{2} \\
\mathbf{T} \forall y \forall z\left(P a_{1} y \supset\left(P y z \supset P a_{1} z\right)\right) \\
\mathbf{T} \forall z\left(P a_{1} a_{2} \supset\left(P a_{2} z \supset P a_{1} z\right)\right) \\
\mathbf{T}\left(P a_{1} a_{2} \supset\left(P a_{2} a_{3} \supset P a_{1} a_{3}\right)\right)
\end{gathered}
$$

$$
\mathbf{F} P a_{1} a_{2} \quad \mathbf{T} P a_{2} a_{3} \supset P a_{1} a_{3}
$$

$$
\begin{array}{cc}
\mathbf{F} P a_{2} a_{3} & \mathbf{T} P a_{1} a_{3} \\
& \vdots \\
& \mathbf{T} \neg P a_{3} a_{1}
\end{array}
$$

$$
\begin{gathered}
\mathbf{T} \exists y P a_{3} y \\
\mathbf{T} P a_{3} a_{4} \\
\vdots
\end{gathered}
$$

Figure 6.1: Tableau for a formula satisfiable in an infinite domain.

6.7 Normal models

[Bos97, Smu68]

