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Chapter 5

Predicate calculus: Syntax

In this chapter we begin investigating the properties of predicate calculus. We shall see that, while some
concepts and results of propositional calculus straightforwardly carry over to the case of predicate calculus,
still many other are significantly generalised or else are completely novel.

5.1 Quantifiers and variables

It is clear that the resources of propositional calculus are inadequate for identifying valid arguments in many
areas of discourse. The inference ‘If Socrates is male, then he is not female’ appears to be a valid one. But
all we can do within the limits of Hs is to symbolise it as ‘If P , then Q’, or perhaps as ‘If P , then ¬Q’, but
in either case there is no reason why these arguments must be recognised as valid. The apparent validity of
our inference derives from a link between Socrates, the property of being female, and the property of being
male. That link remains inscrutable so far as we are confined to Hs. Thus we must enrich our syntactic and
semantic means to talk about objects and relations (recall that properties are unary relations). This will be
achieved in predicate calculus.

Some of the elements of predicate calculus should be familiar from the introductory course. Here we start by
drawing attention to just one specific issue of philosophical, rather than mathematical, significance—namely,
the role of variables—and proceed straightaway to the formal exposition.

The true claim ‘The number 9 is less than, or equal, or greater than 0’ can be paraphrased as a disjunction:

(9 < 0) ∨ (9 = 0) ∨ (9 > 0).

To write this disjunction in our canonical propositional notation we may simply treat each disjunct as an atomic
sentence denoting it by a sentence parameter. But consider another true statement, ‘Every real number is less
than, or equal to, or greater than 0’. Here an attempt to ape our disjunction:

(Every real number < 0) ∨ (Every real number = 0) ∨ (Every real number > 0)

fails, since this paraphrase is obviously false. Rather, we have to labour a bit, first representing the original
statements as:

Whatever real number is selected, it is either less than, or equal to, or greater
than 0.

Therefore:

Whatever real number is selected, ((it < 0) ∨ (it = 0) ∨ (it > 0)).

However, suppose we advance further and wish to make a claim previously made about 0 about every number.
That will be another true claim, since, mathematically, there is nothing unique about 0 in this respect. Then
we may say:

Whatever real number is selected, (every real number is either less than it, or
equal to it, or greater than it).

But the parenthetical expression still demands a paraphrase. According to our previous strategy, we may
expect the following:

Whatever real number is selected, (whatever real number is selected, ((it < it) ∨
(it = it) ∨ (it > it))).

29



5. PREDICATE CALCULUS: SYNTAX 30

This will not do: unless we separate between two selections—that is, two occurrences of ‘whatever’ in our
statement—we will be making a false claim. To distinguish between them, we may resort to indexing. We
shall attach the same indices to ‘whatever’ and to the locutions of ‘it’ fixed by ‘whatever’. Accordingly:

Whatever1 real number is selected, (whatever2 real number is selected, ((it2 <
it1) ∨ (it2 = it1) ∨ (it2 > it1))).

But instead of indexing it would be more convenient to distinguish the scope of the occurrence of ‘whatever’
by different letters. Thus, the latest paraphrase will take the form:

Whatever real number x is selected, (whatever real number y is selected, ((y < x)
∨ (y = x) ∨ (y > x))).

On the other hand, the locution ‘whatever entity is selected’ is synonymous with the locution ‘for all entities’.
We further abbreviate ‘for all’ as ‘∀’. Yet the paraphrase:

∀x(∀y((y > x) ∨ (y = x) ∨ (y < x))).

would be too quick: we have omitted the provision made for real numbers. The remedy is not difficult: the
claim ‘For all F s, · · · ’ may be paraphrased as the claim ‘For all x, if x is F , then · · · ’. By inserting the
conditional we avoid making claims about any non-F . Hence the correct paraphrase would be as follows:

∀x(x is a real number ⊃ (∀y(y is a real number ⊃ ((y > x) ∨ (y = x) ∨ (y < x))))).

We shall have an opportunity to explore the properties of quantifiers in more detail later on. What is important
right now is to notice that the variables as introduced by us have the sole role of cross-referencing the quantifier.
The indexing tool we abandoned for the purpose of convenience displayed just that. In this way variables are
distinguished from names, or ‘individual constants’. This may seem obvious: the whole purpose of moving from
the specific claims about 9 and 0 above was in eliminating the names for these numbers in our statements.
None the less it is not uncommon to encounter claims, such as ‘Take any number—say, 22’, or ‘Take any
politician—say, Tony Blair’. The speaker may go on and predicate properties of the number 22 or Tony Blair.
Thus, if the resulting claim has the form ‘x is F ’, x would appear to be a proper name—either for 22, or Tony
Blair. Such a practice would be logically fallacious for a number of reasons. The simplest fallacy, to cut the
story short, is that the original intention of the speaker was to reason about properties of every number or
politician, whereas 22 and Tony Blair may not share properties with every number or politician. In general,
the use of variables allows us making claims about arbitrary entities, but it does not validate replacing those
variables by names of specific entities. (In daily contexts, the speaker is likely to be interpreted as making an
inductive inference: by examining the properties of Tony Blair and, say, Jacques Chirac, he leaps to a claim
about politicians in general.)

5.2 First-order theory

We shall present the system Tp of predicate calculus. To begin with, the above discussion suggests a revision
of our concept of signature. We formulate it in the most general way, and will simplify later.

Definition 5.1. Let Σv be a denumerable set of individual variables. Let Σip be a denumerable set of
individual parameters. Let Σc be a set of individual constants. Let Σp be a denumerable set containing i-ary
predicate parameters for each i ≥ 0. Let Σf be a denumerable set containing i-ary function parameters for
each i ≥ 0. The signature for Tp is the set Σ = Σv ∪ Σip ∪ Σc ∪ Σp ∪ Σf .

Remark. The sets Σv, Σip, Σc, Σp, and Σf are mutually disjoint.

Predicate parameters having the arity n should be thought as standing for the sentences in the object
language that have n blanks. When we wish to identify the predicate, those blanks will be represented by
circled numerals (see Exercises for an example). Consequently, an 0-ary predicate parameter will be nothing
but a sentence parameter. Similarly, constants can be thought as 0-ary function parameters, as we have
mentioned already whilst discussing tautologies and contradictions. On occasions, it is convenient to specify
the arity of predicates (and functions) explicitly. For an i-ary predicate Pj we shall then write ‘P i

j ’.
The sign ∀ will stand for the universal quantifier. The existential quantifier will be introduced as an

abbreviation. We can now define terms and formulae of our theory as follows.
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Definition 5.2. The set TΣ of terms of the signature Σ for Tp is the smallest set of expressions determined
as follows:

1. Σv ∪ Σip ∪ Σc ⊆ TΣ;

2. If t1, . . . , tn ∈ TΣ and f ∈ Σf , then f(t1, . . . , tn) ∈ TΣ.

Definition 5.3. The set FΣ of formulae of the signature Σ for Tp is then determined by the following rules:

1. If P ∈ Σp is an 0-ary predicate parameter, then P ∈ FΣ.

2. If P ∈ Σp is an n-ary predicate parameter, where n > 0, and t1, . . . , tn ∈ TΣ, then Pt1 · · · tn ∈ FΣ.

3. If A ∈ FΣ, then ¬A ∈ FΣ.

4. If A,B ∈ FΣ, then (A ⊃ B) ∈ FΣ.

5. If A ∈ FΣ, x ∈ Σv, then ∀xA ∈ FΣ.

Remark. Unless explicitly indicated to the contrary, we shall assume that Σf = Σc = ∅. Note also that each
n-ary function f : X → Y can be ‘represented’ by an (n + 1)-ary predicate as follows:

f(x1, . . . , xn) = y ⇐⇒ P (x1, . . . , xn, y),

where x1, . . . , xn ∈ X, y ∈ Y . This will allow us talking about various mathematical structures without using
function parameters.

Definition 5.4. Let SmΣ = Σ ∪ {¬, ⊃, ∀, (, )}. Then SmΣ is the set of symbols of the signature Σ.

An expression of Σ is any string of elements of SmΣ. An atomic formula is a formula containing no
logical connectives or quantifiers. Similarly to the propositional case, we can now give an interpretation of the
complexity of formulae.

Definition 5.5. By the degree d(A) of the formula A we understand the number of occurrences of logical
connectives and quantifiers in A, with every atomic formula assigned the degree 0.

Definition 5.6. For every A ∈ FΣ, x ∈ Σv, and a ∈ Σip we define the formula Ax/a as follows:

1. If A is atomic, then Ax/a obtains by substituting a for every occurrence of x in A.

2. (A ⊃ B)x/a = Ax/a ⊃ Bx/a.

3. (¬A)x/a = ¬Ax/a.

4. (∀xA)x/a = ∀xAx/a.

5. (∀yA)x/a = ∀yAx/a.

A closed formula, or a sentence, is a formula A such that, for every a ∈ Σip and every x ∈ Σv, Ax/a = A.
The notion of substitution may be easier to understand with the aid of the notion of free and bound

occurrences of variables. The scope of an occurrence of a quantified variable, i.e. a variable immediately
preceded by a quantifier, is the smallest formula following that occurrence.

Example 5.7. (∀xPx) ⊃ (∀x(Qxy ⊃ Ry)). Here we identify two occurrences of the universal quantifier. . .

The variable x has a bound occurrence in the formula A if it either falls within the scope of an occurrence
of the quantifier in A, or else is immediately preceded by a quantifier. The variable x has a free occurrence if
it is not bound. Then we regard the formula Ax/a as a result of substituting a for every free occurrence of x.
Equivalently, we can say that x has a free occurrence in A if Ax/a is not the same formula as ̸= A.

Example 5.8. If A is the formula ∀xPx ⊃ ∀yQxy, then Ax/a = ∀xPx ⊃ ∀yQay.

Definition 5.9. ‘∃xAx/a’ ⇐⇒ ‘¬∀x¬Ax/a’.

Remark. Metatheorems on deducibility and the deduction theorem are proved for the Hilbert-type axiomati-
sation of Tp in exactly the same way they are proved for Hs.

[Qui51, Bos97, Men64]



Chapter 6

Predicate calculus: Semantics

6.1 Models and satisfiability

We shall now introduce several key notions of the predicate calculus. We start from afar by introducing a very
general notion of algebraic system. Intuitively, an algebraic system is a set of objects, the elements of which
we use in interpreting predicate parameters or functional parameters.

Definition 6.1. An algebraic system is a triple M = ⟨M, ΩF ,ΩP ⟩, where M is a non-empty set of individuals,
ΩF is a set of operations on M , and ΩP is a set of predicates on M . If ΩP = ∅, then M is called an algebra.
If ΩF = ∅, then M is called a model.

Definition 6.2. The set M of the system M = ⟨M, ΩF , ΩP ⟩ is the domain of M. ΩF is the operator domain.
ΩP is the predicate domain. The cardinality of M is the number |M |.

Suppose, however, that we have to make claims about the elements of M , ΩF , and ΩP . We shall need
a language for making those claims. Thus, an alternative formulation of the notion of algebraic system,
albeit a less intuitive one, highlights the role of the signature and the distinction between object-language and
metalanguage. Generally speaking, the signature may be finite.

Definition 6.3. An algebraic system of the countable signature Σ is a pair M = ⟨M, I⟩, where M is a
non-empty set of individuals, and I is a mapping defined on M with the following conditions:

1. For every n-ary predicate parameter P ∈ Σp, I(P ) ⊆ Mn;

2. For every n-ary function parameter f ∈ Σf , I(f) : Mn → M ;

3. For every c ∈ Σc, I(c) ∈ M .

We may explicitly distinguish between symbols (linguistic items) and their interpretations in M by writing,
for each symbol s, ‘s’ to denote I(s). Sometimes it may be more convenient to replace I with the list of its
values and to write M =

⟨
M ; P1, . . . ; f1, . . . ; c1, . . .

⟩
. This notation shows also the equivalence of our two

definitions of algebraic system. Moreover, let the arity of Pi and fi be denoted by n(Pi) and n(fi) respectively.
Then the system M is said to be of the type

⟨
n(P1), . . . ;n(f1), . . .

⟩
.

Example 6.4. The system Z = ⟨Z; +; ≤⟩ has the set of integers as the domain, the binary operation of addition
in the set ΩF and the binary predicate ‘ 1, is less or equal to 2,’ in the set ΩP . M is of the type ⟨2; 2⟩.
Remark. In accordance with our earlier remark on representing n-ary functions with (n + 1)-ary predicates, it
is possible to transform algebras (or generally, algebraic systems) into models ‘representing’ them.

Here we shall only be interested in models. Given a model, we can define a valuation V for sentences of Σ.

Definition 6.5. Let SΣ be the set of all sentences of the signature Σ. Let M = ⟨M, ΩP ⟩. Let PM ∈ ΩP .
Then V is a first-order valuation of SΣ in the model M if the following holds:

1. V (Pa1 · · · an) =

{
1 if ⟨a1, . . . , an⟩ ∈ P

0 otherwise.

2. (a) V (¬A) =

{
1 if V (A) = 0

0 if V (A) = 1

32
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...

T∀xA
...

TAx/a

...

F∃xA
...

FAx/a

(a is an arbitrary parameter)

...

F∀xA
...

FAx/a

...

T∃xA
...

TAx/a

(a is a ‘new’ parameter)

Table 6.1: Signed tableau processing rules for quantifiers

(b) V (A ⊃ B) =

{
1 if V (A) = 0 or V (B) = 1

0 if V (A) = 1 and V (B) = 0.

3. V (∀xA) =

{
1 if V (Ax/a) = 1 for all a ∈ M

0 if V (Ax/a) = 0 for at least one a ∈ M.

4. V (∃xA) =

{
1 if V (Ax/a) = 1 for at least one a ∈ M

0 if V (Ax/a) = 0 for all a ∈ M.

We can now define satisfiability and validity.

Definition 6.6. Let A ∈ FΣ. Then A is satisfied, or true, in the model M if there is a valuation V of M such
that V (A) = 1. (Sometimes it is convenient to indicate this fact as M |= A.)

Definition 6.7. Let A ∈ FΣ. Then A is valid in the model M if for all valuations V of M, V (A) = 1.

Definition 6.8. Let A ∈ FΣ. Then A is satisfiable if there is a model M and a valuation V of M such that
V (A) = 1.

6.2 Rules for semantic tableaux

Tableaux have the same application in predicate calculus as they did in sentence calculus. To the earlier rules
we add the rules for developing the quantifiers.

Example 6.9. Let us find a proof for ∃x(Px ∨ Qx) ⊢ ∃xPx ∨ ∃xQx:

T∃x(Px ∨ Qx)

F∃xPx ∨ ∃xQx

F∃xPx

F∃xQx

TPa ∨ Qa

FPa

FQa

TPa

×
TQa

×

To justify the tableau method, we shall first establish the soundness of tableau proofs.
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Definition 6.10. Let A ∈ FΣ and M = ⟨M, I⟩. Then the C-sentence Ac = Aa1/c1···an/cn is a formula obtained
from A by replacing each occurrence of individual parameters with individual constants c1, . . . , cn such that
c1, . . . , cn ∈ M .

The notions of satisfiability and simultaneous satisfiability naturally carry over to the case of Ac. Let us
say further that a tableau T is simultaneously satisfiable if at least one path of it is simultaneously satisfiable.

Proposition 6.11. Let T and T ′ be tableaux such that T ′ is an immediate extension of T . Then, if T is
simultaneously satisfiable, T ′ is also simultaneously satisfiable.

Proof. We should consider cases for each of the tableau rules. Let us consider only selected rules.

1. Suppose T ′ is obtained from T by applying the rule

...

TA ⊃ B
...

FA TB

to the path θ of T . Since T is simultaneously satisfiable, it contains a simultaneously satisfiable branch
τ . If τ ̸= θ, then τ is in T ′, and so T ′ is simultaneously satisfiable. Suppose τ = θ. Then θ is
satisfiable. Let the model M = ⟨M, I⟩ simultaneously satisfy θ. Then, for a valuation V of M, we have
that V ((A ⊃ B)c) = 1, where every ci ∈ M . Thus V ((¬A)c) = 1 or V (Bc) = 1. Clearly, then, the
valuation V simultaneously satisfies either the pair ⟨θ, ¬A⟩, or the pair ⟨θ, B⟩. It follows that T ′ is
simultaneously satisfiable, as at least one of its paths is simultaneously satisfiable.

2. Suppose T ′ is obtained from T by applying the rule

...

T∀xA
...

TAx/a

to the path θ of T . Since T is simultaneously satisfiable, it contains a simultaneously satisfiable branch
τ . If τ ̸= θ, then τ is in T ′, and so T ′ is simultaneously satisfiable. Suppose τ = θ. Then θ is
satisfiable. Let the model M = ⟨M, I⟩ simultaneously satisfy θ. Then, for a valuation V of M, we have
that V (∀x(A)c) = V ((∀xA)c) = 1, where every ci ∈ M . Hence, in particular, M satisfies Ax/a. Thus
T ′ is simultaneously satisfiable.

Proposition 6.12 (Soundness for tableaux). Let Γ = {A1, . . . , An} be a set of sentences with parameters. If
there is a closed finite tableau starting with A1, . . . , An, then Γ is not simultaneously satisfiable.

Proof. Let T be a tableau starting with A1, . . . , An. Then there is a sequence of tableaux T1, T2, . . . , Tn such
that T1 has the sole branch ⟨A1, . . . , An⟩, Tn = T , and for each 0 < i < n, Ti+1 is an immediate extension
of Ti. Suppose, for reductio, that {A1, . . . , An} is simultaneously satisfiable. Then T1 is also simultaneously
satisfiable. Using induction on i and Proposition 6.11 we derive that, for each 0 < i < n + 1, Ti is satisfiable.
But this is impossible, as Tn is closed by assumption. Hence {A1, . . . , An} is not simultaneously why? . . .

satisfiable.

6.3 Logical equivalences

Before we show completeness of our method, let us record some useful equivalences of first-order calculus.
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Definition 6.13. Let A ∈ FΣ and let x1, . . . , xn be the variables occurring freely in A and a1, . . . , an be the
parameters not occurring in A. Let Aa = Ax1/a1···xn/an . Then A is satisfiable if and only if Aa is satisfiable.
And A is logically valid if and only if Aa is logically valid.

We can now register some properties of satisfiability and validity.

Proposition 6.14. Let A ∈ FΣ. Then A is logically valid if and only if ¬A is not satisfiable. And A is
logically satisfiable if and only if ¬A is not not logically valid.

Proof. Straightforward from definitions.

Proposition 6.15. Let A ∈ FΣ. Then A is logically valid if and only if ∀A is logically valid. A is satisfiable
if and only if ∃xA is satisfiable.

Proof. Exercise.

Definition 6.16. Let A,B ∈ FΣ. Then A is logically equivalent to B (A ≃ B) if and only if A ↔ B is logically
valid.

Proposition 6.17. Let A,B ∈ FΣ such that A and B contain a free occurrence of x. If A ≃ B, then
∀xA ≃ ∀xB and ∃xA ≃ ∃xB.

Proof. Let the formula A contain the free occurrences of the variables x, x1, . . . , xn, y1, . . . , yk, and let B
contain the free occurrences of the variables x, x1, . . . , xn, z1, . . . , zl, so that the common free variables are
x, x1, . . . , xn. Since A ≃ B, on any arbitrary model M = ⟨M ; · · ·⟩ the formula A will be logically valid only
for those arrays ⟨x1, . . . , xn, y1, . . . , yk, z1, . . . , zl⟩, for which B is also logically valid. But this means precisely
that ∀xA ≃ ∀xB.

The case for the existential quantifier is proven analogously.

Let us now formulate important logical equivalences for Tp. We shall split them into four groups.

Proposition 6.18. Swapping quantifiers:

1. ∀x∀yPxy ≃ ∀y∀xPxy.

2. ∃x∃yPxy ≃ ∃y∃xPxy.

Proof. To show the first equivalence, we notice that ∀x∀yPxy is true just in case Pxy is logically valid. The
second equivalence is left as an exercise.

Remark. Another way of putting this claim is as follows:

1. ∀xA ≃ A;

2. ∃xA ≃ A,

assuming in both cases that x does not occur freely in A.

Proposition 6.19. Linking existential and universal quantifiers:

1. ¬∀xA ≃ ∃x¬A;

2. ¬∃xA ≃ ∀x¬A.

Proof. To prove 1, we notice that if the formula ¬∀xA is true, then ∀xA is false. Thus the formula A is not
logically valid. But then ¬A is satisfiable. That is, for some x it is true. Hence, ∃x¬A is true. The other
direction is proved similarly.

To prove 2, we notice that ¬∃xA is true just in case ∃xA is false. This means that A is not satisfiable. And
this is so just in case ¬A is logically valid. And ¬A is logically valid just in case ∀x¬A is logically valid.

Remark. In the finite case, there is an analogy here with de Morgan’s laws. The proved proposition may be
regarded as a generalisation into the infinite case.

Proposition 6.20. Let A ∈ FΣ such that x does not occur freely in it. The distribution rules for quantifiers
are as follows:

1. ∀x(A ∧ Px) ≃ A ∧ ∀xPx;
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2. ∀x(A ∨ Px) ≃ A ∨ ∀xPx;

3. ∃x(A ∧ Px) ≃ A ∧ ∃xPx;

4. ∃x(A ∨ Px) ≃ A ∨ ∃xPx;

5. ∃x(A ⊃ Px) ≃ A ⊃ ∃xPx;

6. ∃x(Px ⊃ A) ≃ ∀xPx ⊃ A;

7. ∀x(A ⊃ Px) ≃ A ⊃ ∀xPx;

8. ∀x(Px ⊃ A) ≃ ∃xPx ⊃ A.

The same claims hold if we replace the formula Px by an arbitrary formula B.

Proof. All these claims may be verified by examining the relevant tableaux.

Proposition 6.21. Let A ∈ FΣ. The rules for renaming bound variables (or rules of relettering) are as
follows:

1. ∀xA ≃ ∀yAy/a;

2. ∃xA ≃ ∃yAy/a.

Proof. By examining the relevant tableaux.

6.4 Prenex normal forms

We shall now prove that any formula can be transformed into prenex normal form. We shall need several
auxiliary notions and a lemma.

Definition 6.22. The notion of immediate subformulae is determined according to the following rules:

1. A and B are immediate subformulae of A ∧ B, A ∨ B, A ⊃ B, whilst A is an immediate subformula of
¬A.

2. For any parameter a, variable x, and formula A, Ax/a is an immediate subformula of ∀xA and of ∃xA.

Definition 6.23. Subformulae are determined by the following rules:

1. If A is an immediate subformula of B, or A = B, then A is a subformula of B;

2. If A is a subformula of B, and B is a subformula of C, then A is a subformula of C.

Proposition 6.24. Let A ∈ FΣ. If we replace its subformula B by a subformula C, such that B ≃ C, then
the resulting formula A′ will be such that A ≃ A′.

Proof. Omitted. Hint: we should induce on the complexity of A.

Definition 6.25. Let A ∈ FΣ. Then A is said to be in prenex normal form if A has the form Q1x1 · · · QnxnB,
where each Qi is a quantifier ∀ or ∃, xi ̸= xj if i ̸= j, and B contains no quantifiers. �
Proposition 6.26. For each A ∈ FΣ there is B ∈ FΣ such that A ≃ B and B is in prenex normal form.

Proof. To facilitate understanding, let us first state the proof informally. We shall use the logical equivalences
for Tp established earlier. To begin with, relying on de Morgan laws, we eliminate all symbols for material
conditionals and bi-conditionals. To the resulting formula we shall apply two types of transformation. In the
first transformation, we find a subformula A′ of A having the form of either C ∧∀xB, or C ∨∀xB, or C ∧∃xB,
or C ∨ ∃xB. For instance, let A′ = C ∧ ∀xB (other cases are done analogously). If C has a free occurrence
of x, then we replace x by some z not occurring in A. If not, then replace A′ by ∀x(C ∧ B). We repeat this
procedure the required number of times. In the second type of transformation, we replace the subformulae
having the form ¬∀xB or ¬∃xB by ∃x¬B or ∀x¬B respectively. In this way we are able to transform A into
Q1x1 · · · QnxnB with B containing no quantifiers.

The same procedure allows a formal presentation along the following lines. Let A ∈ FΣ. Let λ(A) ∈
{0, 1, 2, . . .} be the number of occurrences of the quantifiers in A. We shall use induction on n and prove
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that for a formula A with λ(A) ≤ n there is B ∈ FΣ such that B is in prenex normal form, and A ≃ B,
λ(A) = λ(B), and the number of the free occurrences of variables in B is equal to the number of the free
occurrences of variables in A.

Thus let n = 0. In this case, we may let B to be just the formula A. Now let n > 0. Suppose λ(A) ≤ n.
The quantifier-free case is trivial. Then let A contain quantifiers. If A has the form ¬C and λ(A) > 0, then
λ(C) = λ(A) > 0. By induction hypothesis there is a formula of the form QxD which is a prenex normal
form for C and where λ(D) = λ(A) and where D may contain quantifiers. Introduce the notation ∀−1 = ∃
and ∃−1 = ∀. We have that A ≃ Q−1x¬D. Now, since λ(¬D) = λ(QxD) = λ(QxA) − 1 ≤ n − 1, there is a
formula B ≃ ¬D which is in prenex normal form and is such that λ(B) = λ(¬D). By our equivalences above,
Q−1xB ≃ A and Q−1xB satisfies the properties of the prenex normal form for A.

The proof w.r.t. the number of free variables is left as an exercise.

Example 6.27. Let us bring the formula ¬∃y¬∃u((∃xPxyz ⊃ ∀xRxy) ∧ ¬∀zPzuz) to a prenex normal form:

¬∃y¬∃u((∃xPxyz ⊃ ∀xRxy) ∧ ¬∀zPzuz) ≃
∀y¬¬∃u((¬∃xPxyz ∨ ∀xRxy) ∧ ∃z¬Pzuz) ≃
∀y∃u((∀x¬Pxyz ∨ ∀tRty) ∧ ∃v¬Pvuv) ≃
∀y∃u(∀t(∀x¬Pxyz ∨ Rty) ∧ ∃v¬Pvuv) ≃
∀y∃u(∀t∀x(¬Pxyz ∨ Rty) ∧ ∃v¬Pvuv) ≃
∀y∃u∀t∀x((¬Pxyz ∨ Rty) ∧ ∃v¬Pvuv) ≃
∀y∃u∀t∀x∃v((¬Pxyz ∨ Rty) ∧ ¬Pvuv).

6.5 Skolem forms

There is a common mathematical practice of picking elements depending on the prior choice of some other
elements. For instance, if we have shown that for each x there is y such that ϕ(x, y), then it is natural to
introduce a function f1 picking y for each x. We will then replace ϕ(x, y) with ϕ(x, f(x)). Such a technique
calls for the employment of a special device. Discuss

tableau rulesConsider a prenex formula A ∈ FΣ. It contains pairwise distinct variables x1, . . . , xn, quantifiers Q1, . . . , Qn,
and a quantifier-free formula B ∈ FΣ. Then we can first identify the indices of the existential quantifiers:
{j1, . . . , ji, . . . , jp | Qji = ∃, 1 ≤ i ≤ n}. Given such a set, we can now expand the signature Σ into ΣA

Sk by
adding p new symbols for parameters or functions. Those will be symbols for Skolem functions (sometimes
also called ‘Herbrand functions’) associated with A. We may also compute the arity of the particular symbol
fh. For 1 ≤ h ≤ p, its arity will equal the number of times the universal quantifier occurs to the left of Qjh

in
the prefix of A. That would be exactly the number jh − h. We also note that constants may be regarded as
0-ary function symbols. Therefore, for fh to be a constant, we require that jh = h, or equivalently, that the
first h quantifications be existential.

Example 6.28. Let the prefix of A be:

∀x0∀x1∀x2∃x3∃x4∀x5∃x6∀x7∀x8∃x9∀x10.

Then we expand Σ into ΣA
Sk by adding four new function symbols f1, f2, f3, f4, whose respective arities will be

3, 3, 4, 6.

We can now build the Skolem form ASk of the formula A. Obviously it will be a prenex formula containing
only universal quantifiers. Let uh be a term of ΣA

Sk consisting of the function symbol fh followed by jh − h
universally quantified variables such that they occur to the left of the variable xjh

in the prefix of the formula
A. In general, uh will take the form:

fhx1x2 · · · xj1−1xj1+1 · · · xj2−1xj2+1 · · · xjh−1−1xjh−1+1 · · · xjh−1.

Then, for each 1 ≤ h ≤ n we replace each occurrence of xjh
in B by the term uh. And in front of this formula

we put the prefix of A from which each occurrence of the existential quantifier has been deleted.

Example 6.29. Suppose the signature Σ contains predicate parameters P 1 and R2. Consider A ∈ FΣ:

∃x0∃x1∀x2∃x3∀x4∀x5∃x6((Rx0x2 ∧ Px5) ⊃ (Rx6x2 ∨ (Rx1x5 ∧ Rx4x3))).
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The signature ΣA
Sk will then contain four new symbols: two constants f1 and f2, a unary function parameter f3

and a ternary function parameter f4. The formula ASk will take the form:

∀x2∀x4∀x5((Rf1x2 ∧ Px5) ⊃ (Rf4(x2, x4, x5)x2 ∨ (Rf2x5 ∧ Rx4f3(x2)))).

We must keep in mind that ASk belongs to a richer signature than A. Hence it is wrong to say that A is
equivalent to its Skolem form. What is true, however, is that when A is considered as a formula belonging to
ΣA

Sk, then it will be semantically entailed by its Skolem form.

Example 6.30. Let us illustrate the claim of entailment. Let A be the formula ∀x0∃x1Rx0x1. We obtain its
Skolem form by adding the function parameter g to its signature Σ. The formula ASk will be ∀x0Rx0g(xo). Let
M = ⟨M ; R, g⟩ be the algebraic system such that M |= ASk. Thus we have that for every a ∈ M we have that
⟨a, g(a)⟩ ∈ R. But this means that M |= A. Therefore, ASk � A.

Skolem functions and Skolem forms have an interesting application in proof theory, as we shall see later
in our discussion of Gentzen systems. A special case of Skolem functions is also used in one of the proofs of
first-order completeness. But their most vital role belongs in model theory. One important fact there is that
for a closed formula to be satisfiable it is necessary and sufficient that its Skolem form be satisfiable. Most of
these applications will fall outside the scope of our concerns. Here we shall only formulate a basic property of
Skolem forms:

Proposition 6.31. Let y1, . . . , yn be pairwise distinct variables and let A ∈ FΣ be a prenex formula with free
occurrences of y1, . . . , yn. Then the formula ASk ⊃ A of the signature ΣA

Sk is valid.

Proof. To be supplied.

6.6 Completeness for tableaux

We now resume our enquiry into the completeness of the tableau method. Let M be a domain of individuals
and let Γ be a set of signed C-sentences (which, we recall, should be regarded as closed C-formulae) associated
with it. We say that Γ is closed if it contains a conjugate pair of C-sentences. Of particular interest to us will
be those sets of C-sentences where, so to speak, all the sentences have been processed according to the tableau
rules. Thus:

Definition 6.32. Let Γ be a set of signed C-sentences. Then Γ is well-developed on M if Γ obeys the rules
for semantic tableaux, so that the following conditions hold:

1. If T¬A ∈ Γ, then FA ∈ Γ, and if F¬A ∈ Γ, then TA ∈ Γ;

2. If TA ∧ B ∈ Γ, then TA ∈ Γ and TB ∈ Γ, and if FA ∧ B ∈ Γ, then either FA ∈ Γ or FB ∈ Γ;

3. If TA ∨ B ∈ Γ, then either TA ∈ Γ or TB ∈ Γ, and if FA ∧ B ∈ Γ, then FA ∈ Γ and FB ∈ Γ;

4. If TA ⊃ B ∈ Γ, then either FA ∈ Γ or TB ∈ Γ, and if FA ∧ B ∈ Γ, then TA ∈ Γ and FB ∈ Γ;

5. (The condition for the bi-conditional is left as an exercise.)

6. If T∃xA ∈ Γ, then TAx/a ∈ Γ for at least one a ∈ M , and if F∃xA ∈ Γ, then FAx/a ∈ Γ for all a ∈ M ;

7. If T∀xA ∈ Γ, then TAx/a ∈ Γ for all a ∈ M , and if F∀xA ∈ Γ, then FAx/a ∈ Γ for at least one a ∈ M .

(Well-developed sets are called ‘Hintikka sets’ in [Smu68].)

To prove completeness, we shall first establish several lemmas.

Proposition 6.33 (Hintikka’s Lemma). Let Γ be a set of signed C-sentences. If Γ is well-developed on M
and open, then Γ is simultaneously satisfiable.

Proof. Let us assume that Γ is well-developed on M and open. Consider a model M = ⟨M, I⟩ of the signature
Σ, such that for any predicate parameter Pn ∈ Σp, Pn = {⟨a1, . . . , an⟩ ∈ Mn | TPa1 · · · an ∈ Γ}. We now
claim that for any C-sentence A the following holds:

i. If TA ∈ Γ, then V (A) = 1;

ii. If FA ∈ Γ, then V (A) = 0.
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The proof should be by induction on the complexity of A. As the basic step, we consider the formula A
such that d(A) = 0. The inductive hypothesis will be that if d(A) > 0, then for any formula B such that
d(B) < d(A) our claims hold. We shall have to consider all the cases corresponding to each of the tableau
rules. Let us consider here some of them, and the rest will be left as an exercise.

1. Let d(A) = 0. Then A will have the form Pa1 · · · an.

i. If TPa1 · · · an ∈ Γ, then we already we have that ⟨a1, . . . , an⟩ ∈ Pn, and so it follows that
V (Pa1 · · · an) = 1.

ii. If FPa1 · · · an ∈ Γ, then we already we have that ⟨a1, . . . , an⟩ /∈ Pn, and so it follows that
V (Pa1 · · · an) = 0.

2. Suppose d(A) > 0 and A has the form ¬B. Then d(A) > d(B), and so the inductive hypothesis holds
for B.

3. Suppose d(A) > 0 and A has the form B ∧C. Then d(A) > d(B) and d(A) > d(C), and so the inductive
hypothesis holds for B and C.

i. If TB ∧ C ∈ Γ, then, since Γ is well-developed, we already we have that TB,TC ∈ Γ, and so it
follows that V (B) = V (C) = 1. Hence V (B ∧ C) = 1.

ii. If FB ∧ C ∈ Γ, then we already we have that FB ∈ Γ or FC ∈ Γ, and so it follows that either
V (B) = 0 or V (C) = 0. Hence V (B ∧ C) = 0.

4. Suppose d(A) > 0 and A has the form ∃xB. Then for all a ∈ M we have d(Bx/a) < d(A), and so the
inductive hypothesis holds for Bx/a.

5. Suppose d(A) > 0 and A has the form ∀xB. Then for all a ∈ M we have d(Bx/a) < d(A), and so the
inductive hypothesis holds for Bx/a.

For the following lemma we let N = {a1, . . . , an, . . .} be a set of parameters. �
Proposition 6.34. Let T0 be a finite tableau. By applying tableau rules it is possible to extend T0 to a possibly
infinite tableau T such that every closed path of T is finite and every open path of it is well-developed on N .

Proof. We construct an array of finite extensions of T0: T1,T2, . . . ,Ti, . . . ,. If for some i the tableau Ti is
closed, then the procedure halts and we let T = Ti. But in any case we may set T = T∞ =

∪∞
i=0 Ti.

We proceed as follows. Let us call the node X ∈ T0 ‘semi-universal’, if it has the form T∀xA of F∃xA.
Suppose we have constructed Ti. Then for each semi-universal node X ∈ Ti and each n ≤ i, we apply the
relevant tableau rule to extend each open path of Ti containing X by TAx/an or FAx/an . Let Ti+1 be the
tableau obtained as a result. Then for each node X of Ti+1 which is not semi-universal we extend each open
path containing X by applying the relevant tableau rule. And then again repeat the procedure for the finite
tableau Ti+2. Therefore, a closed path is never extended, so that all closed paths of T∞ are finite. It is also
clear from our construction that each open path of T∞ is well-developed on N . Therefore, T∞ has the desired
properties.

Finally, let us prove another lemma related to the properties of trees generally. Recall that in a finitely
generated tree each node has finitely many successors (i.e. ‘immediate’ successors).

Proposition 6.35 (König’s Lemma). Let T be a finitely generated tree with infinitely many nodes. Then T
contains at least one infinite path.

Proof. Let Tx be the set of all nodes x ∈ T such that x has infinitely many descendants (i.e. both ‘immediate’
and non-‘immediate’ successors). Then Tx is a sub-tree of T . Each x ∈ Tx will have at least one successor.
Let x1 be the root of T . By assumption, since T is infinite, the root will have infinitely many descendants. If
all of the successors of x1 have finitely many descendants, then x1 would have had finitely many descendants—
which is false. Hence there is at least one successor of x1 which has infinitely many descendants. Let it be x2. No need for

the axiom of
choice

We thus construct inductively a sequence x1, x2, . . . ,. Clearly such a sequence will constitute an infinite path
of T .

We are now in a position to prove completeness. Similarly to the propositional case (Proposition 4.47), we
are going to connect the semantic notion of validity with the syntactic notion of provability. Recall that the
provability of A by the tableau method would mean that there is a closed tableau with FA at the root.
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Proposition 6.36 (Completeness). Let Γ = {A1, . . . , An} a set of sentences with parameters. If Γ is not
simultaneously satisfiable, then there is a finite closed tableau with Γ at the root.

Proof. By Proposition 6.34 there is a tableau T such that every closed path of it is finite and every open path
of it is well-developed on M . If T is closed, then by König’s Lemma T is finite. Suppose T is open. Let ∆
be its open path. Then ∆ is well-developed. But by Hintikka’s Lemma ∆ is simultaneously satisfiable in M .
Since Γ ⊆ ∆, Γ is simultaneously satisfiable in M .

The following claims are obtained as simple corollaries of the completeness result as stated above.

Proposition 6.37 (Löwenheim). Let Γ = {A1, . . . , An} a set of sentences with parameters. If Γ is simulta-
neously satisfiable, then it is simultaneously satisfiable in a countable domain.

Proof. Follows from the proof of Proposition 6.36.

Proposition 6.38. Let Γ = {A1, . . . , An} a set of sentences with parameters. Γ is not simultaneously satisfi-
able if and only if there exists a finite closed signed tableau starting with TA1, . . . ,TAk.

Proposition 6.39. The sentence A is logically valid if and only if there exists a finite closed signed tableau
starting with FA.

Proposition 6.40. The sentence B is a logical consequence of A1, . . . , Ak if and only if there exists a finite
closed signed tableau starting with TA1, . . . ,TAk,FB.

We shall now prove the compactness theorem for predicate calculus, a much deeper result than compactness
for propositional calculus. It was originally proven by Mal’cev, of course using different techniques. We again
prove it for the countable case, since the uncountable case invokes the axiom of choice.

Proposition 6.41 (Compactness). Let Γ be a countably infinite set of first-order sentences. Then Γ is
simultaneously satisfiable if and only if each finite subset of Γ is simultaneously satisfiable.

Proof. Let Γ = {A0, A1, . . . , Ai, . . .}. We start by letting T0 be the empty tableau. Suppose we have con-
structed Ti. Extend Ti to T ′

i by appending Ai to each open path of Ti. Since {A0, A1, . . . , Ai} is simulta-
neously satisfiable, T ′

i has at least one open path. Now extend T ′
i to Ti+1 and then to Ti+2 as in the proof

of Proposition 6.34. Finally we let T = T∞ =
∪∞

i=0 Ti. We have that every closed path of T is finite, and
every open path of T is well-developed on M . Note also that T is an infinite, finitely branching tree. By
König’s Lemma we let Γ′ be an infinite path in T . Then Γ′ is well-developed on M and Γ ⊆ Γ′. By Hintikka’s
Lemma, Γ′ is simultaneously satisfiable. Hence Γ is simultaneously satisfiable.

We can now prove another well-known theorem which strengthens the result of Proposition 6.37.

Proposition 6.42 (Skolem-Löwenheim). Let Γ be a countably infinite set of first-order sentences. If Γ is
simultaneously satisfiable, then Γ is simultaneously satisfiable in a countable domain.

Proof. Follows from the proof of the compactness theorem. Notice that Γ is well-developed in the countably
infinite domain M , and therefore, simultaneously satisfiable on it.

Let us now go back to the completeness result we have obtained. It appears as though the tableau method
provides a test for logical validity of sentences of the predicate calculus. Unfortunately, the test would only be
partially effective. If a sentence A is logically valid, we will certainly find a finite closed tableau starting with
FA. But if A is not logically valid, we will not necessarily find a finite tableau to show this.

Example 6.43. Consider the formula:

A : ∀x∃yPxy ∧ ∀x∀y(Pxy ⊃ ¬Pyx) ∧ ∀x∀y∀z(Pxy ⊃ (Pyz ⊃ Pxz)).

This formula is satisfiable on an infinite model, but is not satisfiable on any finite one. Consider M = ⟨{0, 1, 2, . . .}; <⟩.
Clearly M |= A. To see that A is not satisfiable on a finite model, let M =

⟨
M ; P

⟩
such that M |= A. Note

that V (Paa) = 0 for any a ∈ M . Let a0 ∈ M . Now select a1 ∈ M such that V (Pa0a1) = 1. Then select
a2 ∈ M such that V (Pa1a2) = 1. By repeating the process we get a sequence ⟨a0, a1, a2, . . .⟩. All the members
of this sequence are different: if i < j, then V (P (aiai+1)) = V (P (ai+1ai+2)) = · · · = V (P (aj−1aj)) = 1. Since
M |= ∀x∀y∀z(Pxy ⊃ (Pyz ⊃ Pxz)), we have that V (P (aiaj)) = 1. So ai ̸= aj . Therefore, M is (countably)
infinite.

The same conclusion may be reached by examining the tableau for A in Figure 6.1. Its infinite open path
gives rise (see the proof of Proposition 6.33) to an infinite model, such as M above.
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T∀x∃yPxy

T∀x∀y(Pxy ⊃ ¬Pyx)

T∀x∀y∀z(Pxy ⊃ (Pyz ⊃ Pxz))

T∃yPa1y

TPa1a2

T∀y(Pa1y ⊃ ¬Pya1)

TPa1a2 ⊃ ¬Pa2a1

FPa1a2 T¬Pa2a1

T∃yPa2y

TPa2a3
...

T¬Pa3a2

T∀y∀z(Pa1y ⊃ (Pyz ⊃ Pa1z))

T∀z(Pa1a2 ⊃ (Pa2z ⊃ Pa1z))

T(Pa1a2 ⊃ (Pa2a3 ⊃ Pa1a3))

FPa1a2 TPa2a3 ⊃ Pa1a3

FPa2a3 TPa1a3
...

T¬Pa3a1

T∃yPa3y

TPa3a4
...

Figure 6.1: Tableau for a formula satisfiable in an infinite domain.
.

6.7 Normal models

[Bos97, Smu68]


