
Intermediate Logic

Lecture notes

Sandy Berkovski

Bilkent University
Fall 2010



Chapter 8

Computability

Historically, issues of computability derive from the problem of finding values of functions. A computing
procedure serving such a purpose was labelled ‘algorithm’ (the word itself comes from the name of al-Khoresmi,
a Baghdad mathematician of the ninth century). Instances of algorithms include such procedures as finding
the greatest common divisor of two natural numbers, solving a system of two linear equations, and so forth.
We can similarly talk of algorithms purporting to identify properties of the given relation. Thus we may look
for an algorithm answering the question whether a certain natural number is prime, or whether certain two
numbers are relatively prime.

8.1 The notion of an algorithm

Intuitively given instances of computing procedures indicate the following properties of the algorithm:

Unambiguous description. An algorithm must have such a description that would allow us to conduct it
mechanically, without a need of attending to its mathematical (or logical, or other) content.

Determinism. Every step of the algorithm must be uniquely determined by its previous steps and the initial
data.

Isolation. Computation must be conducted only by the algorithm’s instructions without any interference of
external processes or computing devices.

With time the increase in the complexity of computing tasks lead to a situation where no concrete procedures
were found. A hypothesis was raised that perhaps no algorithms exist for those tasks. The theoretical
impossibility of finding such algorithms cannot be decided by any number of examples. It calls for a general
solution. Therefore, a verdict on this problem cannot be reached unless we refine our intuitive notion of an
algorithm and convert it into a mathematically precise concept.

8.2 Turing machines

There are several mathematically precise notions of algorithm currently available. All of them represent rather
complex constructions. We shall now describe one such construction, called Turing machine (named after a
British mathematician Alan Turing). First of all, we should note that, since algorithms have to be described
unambiguously, the objects on which they operate—that is, the values of the functions, and the like—must
also allow unambiguous descriptions. On the other hand, all unambiguously described mathematical objects
must be represented as words of an alphabet. It is, then, natural to demand that algorithm operate with words
of an alphabet. That is indeed how Turing machines work.

A Turing machine is a combination of several components. For the purposes of exposition we shall not try
to achieve the highest possible rigour and abstractness. The four components are as follows:

1. The tape which is split into a finite number of squares. The tape has direction; accordingly, it contains
the leftmost and rightmost squares. The tape may change in the process, so that new squares may be
attached to it from the right. Each square has squares immediately to the right and to the left of it.

2. The scanning mechanism inspecting the content of the square called the reading head.

50



8. COMPUTABILITY 51

3. Two finite alphabets A = {#, a0, . . . , an} and Q = {q0, . . . , qt}, where n, t > 0. The elements of A are
the symbols of the machine, and the elements of Q are the states of the machine. In each moment of
time the machine is present in some state, and each square contains a certain symbol. The symbol a0 is
‘blank’, qt is the final state, and q1 is the initial state. The symbol # prevents the scanning device from
exiting the tape. For convenience we shall let # = a−1.

4. The machine’s programme is a finite set of words, conventionally called ‘commands’. They have the
form:

qiaj � akCql,

where:

(a) qi ̸= qn and C ∈ {L,R, H};

(b) Either aj = ak = #, or else aj ̸= # and ak ̸= #.

The above command would mean that every time the machine is in the state qi and is scanning the square
with the content aj , its next step will be as follows:

1. In the scanned square the symbol aj is deleted and replaced by ak;

2. The reading head moves one square to the left if C = L, or to the right if C = R, or stays put if C = H;

3. The machine moves into the state ql.

The correct computation must satisfy the following conditions:

1. Only the leftmost square contains #;

2. At the beginning and at the end the reading head scans the leftmost square;

3. At the beginning the machine is present in the initial state q1, and at the end—in the final state q0;

4. At the end all blank squares, if there are any, are located to the right of the non-blank squares.

We can now introduce a formal notion of correct computation. Let A∗ be the set of all words of the alphabet
A and let A+ ⊆ A∗ be the set of all non-empty words.

Definition 8.1. A word of the form xqiy is the situation of the Turing machine T , where x ∈ A∗, y ∈ A+,
qi ∈ Q, and xy is representable as #z, where z is #-free.

Intuitively the situation is a snapshot of the machine at any given moment: xy is the content of the tape,
qi is the state of the machine, whereas the first letter of y reflects the square currently scanned. The situation
is called initial if it has the form q1#t. The situation is called final if it has the form q0uam

0 , where u is a0-free.
We can now refine the notion of machine command:

Definition 8.2. The situation s′ is obtained from the situation s by applying the command K if one of the
following conditions holds:

1. K = qiaj � akHal, s = vqiajw, s′ = vqlakw;

2. K = qiaj � akLql, s = varqiajw, s′ = vqlarakw;

3. K = qiaj � akLql, s = vqiajarw, s′ = vakqlarw;

4. K = qiaj � akLql, s = vqiaj , s′ = vakqla0.

(The last clause evidently refers to the case when an extension of tape is required.)

The precise definition of correct Turing computation is as follows:

Definition 8.3. A sequence ⟨s0, s1, . . . , sp⟩ is the correct computation by a Turing machine M if:

1. For every i, si+1 is obtained from si by application of one of the commands of T ;

2. s0 is the initial state;

3. sp is the final state.



8. COMPUTABILITY 52

If there is a correct computation of the machine M which starts with q1#t1a0 · · · a0tn and finishes with
the situation where q0#uam

0 , then we say that M is processing the array ⟨t1, . . . , tn⟩ into the word u and we
shall write u = M [t1, . . . , tn]. In this case we say that M is applicable to the array [t1, . . . , tn]. In general, M
is applicable to the word W ∈ A∗

in if M [W ] stops after a finite number of steps and there is u ∈ A∗
out such that

u = M [W ].
Let Ain, Aout ⊆ A − {a−1, a0}. We can now give a definition of the Turing-computable function:

Definition 8.4. A Turing machine M computes the function f of the arity n if f satisfies the following
conditions:

1. The domain of f is contained in A∗n
in , while its range is in A∗

out;

2. ⟨x1, . . . , xn⟩ ∈ A∗n
in just in case if y = M [x1, . . . , xn], y ∈ A∗

out, then y = f(x1, . . . , xn).

A function f is Turing-computable if there is a Turing machine computing f .

Analogously we may define the notion of a Turing-computable predicate:

Definition 8.5. A predicate F (x1, . . . , xn) is Turing-computable if there is a Turing-computable function f
such that:

f(x1, . . . , xn) =

{
0 if ⟨x1, . . . , xn⟩ ∈ F

1 otherwise.

Let us now consider particular Turing machines.

Example 8.6. Let us build a machine which to each word x in the alphabet would attach the symbol a1 from the
right, so that xa1 = M [x]:

q1ai � aiRq1 q1a0 � a1Lq2

q2ai � aiLq2 q2# � #Hq0,

where i = −1, 1, . . . , n. We shall check the correctness of our machine by letting x = a1a2a1. We shall then obtain
the following computation:

#q1a2a1a2

#a2q1a1a2

#a2a1q1a2

#a2a1a2q1a0

#a2a1q2a2a1

#a2q2a1a2a1

#q2a2a1a2a1

q2#a2a1a2a1

q0#a2a1a2a1.

Example 8.7. Let us build a machine which doubles every word x ∈ A∗
in, or in other words, which computes the

function f(x) = xx. If x is empty, then we may let f(x) = x.

q1# � #Rq1 q1ai � a′
iRq1i

q1iaj � a′
jRq1i q1ia

′′
i � a′′

j Rq1i

q1ia0 � a′′
i Lq2 q2ai � aiLq2

q2a
′′
i � a′′

i Lq2 q2a
′
i � a′

iRq1

q1a
′′
i � a′′

i Rq3 q3a
′′
i � a′′

i Rq3

q3a0 � a0Lq4 q4a
′′
i � aiLq4

q4ai � aiLq4 q4# � #Hq0

q1a0 � a0Lq0,

where i, j = 1, . . . , n. Here the principle is that every symbol of the input word is copied to the right. The copied
symbol is marked to avoid its repeated copying and is ‘remembered’ with the state. Then the reading head moves



8. COMPUTABILITY 53

to the right to reach the first empty square where the copy is being written. This copy is also marked (primed twice)
to avoid repeated copying. Then the head moves to the left: the encounter with the primed symbol tells it to start
the cycle all over again. If the cycle begins with the symbol which is marked twice, then the copying is finished. All
that we have to do is to remove the marks. The final command purports to deal with an empty input word.

We should next consider the case where we need to build a machine computing the value of the functions
defined on natural numbers and returning natural numbers as values. More precisely, we write ω to denote
the set of natural numbers. Then we are interested in the functions f : X → ω, where X ⊆ ωn for some n.
Here we introduce a form of encoding natural numbers on the tape. We stipulate Ain = {|} and represent the
number m by a word consisting of m strokes. Such a word is sometimes called the numeral of the number m
and is denoted by m. It is then natural to define a function f : {|}∗ × · · · × {|}∗ → {|}, such that:

f(x1, . . . , xn) = y ⇐⇒ f(x1, . . . , xn) = y.

From the examples we have considered above it will then be clear how to build Turing machines f(n) = n,
f(n) = n + 1, and f(n) = 2n.

8.3 Recursive functions

The already mentioned function f : X → ω (X ⊆ ωn) will be called a partial function.

Definition 8.8. A partial function fn is computable if there is an algorithm B processing n-tuples α ∈ ωn

and which does not process n-tuples α /∈ X such that B[α] = f(α), where α ∈ X.

The following claim was put forward by Turing:

Proposition 8.9 (Turing’s thesis). Every computable partial function is Turing-computable.

Proof. None. (Discussion. . . )

We shall now attempt to further refine the notion of a computable function. We shall use a popular method
of calculating the values of the function f of natural numbers (i.e. having the same form f : X → ω). The
main idea here is in laying down the value f(0) and fixing the recursive formula f(n + 1) = h(f(n)) which
allows to compute the value f(n + 1) if we already know the value f(n). Such a process is generally called
recursion. The issue of computing one function is then reduced to the issue of computing another.

Example 8.10. The function f(n) = 2n can be represented as:

f(n) =

{
1 if n = 0

2n−1 · 2 if n > 0.

Then the function h will take the form h(m) = m · 2.

An important fact to notice is that if a function is intuitively computable, then the function obtained
from it by recursion will also be intuitively computable. In fact, we can generalise the notion of recursion
a little further. The function f(n + 1) may depend not only on f(n), but also on n. In this case we say
that f(n + 1) = h(n, f(n)). Thus, for f(n) = n! (where f(0) = 1) we have h(l, m) = m · (l + 1). So
(n + 1)! = n! · (n + 1). Also, we may include a rule for computing n-ary functions. If we compute a function
f(x1, . . . , xk) and recursion is conducted on the variable xk, then f(x1, . . . , xk−1, 0) = g(x1, . . . , xk−1), while
f(x1, . . . , xk + 1) = h(x1, . . . , xk−1, xk, f(x1, . . . , xk−1, xk)), where gk−1 and hk+1 are computable functions.
(Intuitively, g expresses the initial condition, and h is the recursive step.)

Recursion is not unique in having a computability-preserving property. Another way is superposition,
whereby our ability to compute f(x) and g(x) entails the ability to compute g(f(x)). Now, if we have a
stock of simple functions which could be computed in a trivial way, then the functions obtained from them by
recursion and superposition would also be computable. The basic functions include the following:

1. The zero function Z(x) = 0 for every x;

2. The successor function S(x) = x + 1 for every x;

3. The projection function In
i (x1, . . . , xn) = xi for every x1, . . . , xn, where 1 ≤ i ≤ n.

Definition 8.11. A function f is primitive recursive if either f is one of the basic functions, or else it is
obtained from them by recursion and superposition.



8. COMPUTABILITY 54

Some instances of primitive recursive functions include:

1. Zn(x1, . . . , xn) = Z(In
i (x1, . . . , xn)).

2. Constant functions of the form k(x): 1(x) = S(Z(x)), 2(x) = S(1(x)), and so forth.

3. The function f(x1, x2) = x1 + x2 is obtained by recursion from I1
1(x1) and S(I3

3(x1, x2, x3)) = x3 + 1, so
that we have: {

x1 + 0 = I1
1(x1)

x1 + (x2 + 1) = (x1 + x2) + 1.

4. The function of limited subtraction:

x
.−− y =

{
x − y if x ≥ y

0 otherwise

is obtained as follows: {
x

.−− 0 = x

x
.−− (y + 1) = (x

.−− y)
.−− 1.

Predicates are treated analogously. Let F (x1, . . . , xn) be an n-ary predicate. We define the function χn
F as

follows:

χF (x1, . . . , xn) =

{
1 if ⟨x1, . . . , xn⟩ ∈ F

0 if ⟨x1, . . . , xn⟩ /∈ F.

The function χF is then called the characteristic function of the predicate F .

Definition 8.12. The predicate F (x1, . . . , xn) defined on ω is primitive recursive if its characteristic function
χF is primitive recursive.

[Men64, BJ89]



Chapter 9

Incompleteness results for arithmetic

9.1 Set-theoretic and semantic paradoxes

. . .

9.2 A Gödelian puzzle

We consider a machine M (perhaps a Turing machine) which prints out various expressions. Let the alphabet
Aout = {¬, P,N, (, )}. An expression X ∈ A∗

out is printable if M prints it. The expression X(X) is called the
norm of the expression X. Clearly X(X) ∈ A∗

out. A sentence will be an expression of one of the four forms:

1. P (X)

2. PN(X)

3. ¬P (X)

4. ¬PN(X).

We then let V (P (X)) = 1 iff X is printable, and V (PN(X)) = 1 iff the norm of X is printable. Similarly for
the rest.

We now obtain a case of self-reference, since our machine M can print various sentences that say in effect
what the machine can or cannot print. On the other hand, if M ever prints P (X), then X is really printable.
And if PN(X) is printable, then X(X) is also printable.

Suppose X is printable. Does it follow that P (X) is printable? No. If X is printable, then P (X) is true.
But we have not shown that all true sentences must be printed by M . All we know is that M does not print any
false sentences. Let us, therefore, ask whether M could possibly print all true sentences. The answer is again
negative. There is at least one true sentence not printable by M . Consider the sentence ¬PN(¬PN). It is true
just in case the norm of the expression ¬PN is not printable. But the norm of ¬PN is exactly ¬PN(¬PN).
Hence ¬PN(¬PN) is true iff it is not printable. Since M prints no false sentences, the remaining option is
that the sentence is true, but is not printable.

9.3 The abstract forms of Gödel’s and Tarski’s theorems

Let us consider a broad notion of mathematical theory to which Gödel’s argument is applicable. To this end
let us fix the components of the signature Σ of such a theory.

1. A countably infinite set E of expressions.

2. A set S ⊆ E of sentences.

3. A set P ⊆ S of provable sentences.

4. A set R ⊆ S of refutable sentences.

5. A set T ⊆ S of true sentences.

55



9. INCOMPLETENESS RESULTS FOR ARITHMETIC 56

6. A set H of predicates. (Generally, predicates are expressions. Informally, they may be thought as sets
of natural numbers.)

7. A function ϕ assigning to each expression E and every natural number n an expression E(n) such that,
for H ∈ H , H(n) is a sentence. (Informally, H(n) says that the number n belongs to the set H.)

We say that a predicate H is true for n ∈ ω (or is satisfied by n) if H(n) ∈ T . The set expressed by H is the
set of all n ∈ ω satisfied by H.

Definition 9.1 (Expressibility). Let X be a set of natural numbers. H expresses X iff for every number n,
H(n) ∈ T ↔ n ∈ X. The set X is called expressible in Σ if there is a predicate of Σ which expresses X.

Since the set E is countably infinite, there are at most denumerably many predicates of Σ. A question
arises whether all sets of natural numbers would be expressible in Σ. That would be the case if there were
denumerably many sets of natural numbers. That this is not so is a consequence of the following celebrated
theorem. (Here the reader is encouraged to consult §2.2.2 for definitions of key notions.)

Proposition 9.2 (Cantor’s theorem). The set ℘(X) of all subsets of X has the cardinality strictly greater
than the cardinality of X.

Proof. First we show that |X| ≤ |℘(X)|. This is done by associating with each x ∈ X a set {x} ∈ ℘(X). This
defines a one-to-one mapping of X into ℘(X).

Suppose, for reductio, that |X| = |℘(X)| and that, therefore, there exists a one-to-one mapping f of X onto
℘(X). Consider the set M = {x ∈ X | x /∈ f(x)}. Clearly M ⊆ X. Then M ∈ ℘(X). And then, by assumption,
there must be m ∈ X such that f(m) = M . Hence, on the one hand, if m ∈ M , then m /∈ f(m) = M , and, on
the other hand, if m /∈ M , then m ∈ f(m) = M . We have obtained a contradiction.

Now, let ω be the set of natural numbers. Then the set ℘(ω) of its subsets (i.e. the set of the sets of natural
numbers) will have a cardinality greater than |ω|. Therefore, there are more than denumerably many sets of
natural numbers, and therefore, not every set of numbers will be expressible in Σ.

Consider now a theory T of the signature Σ.

Definition 9.3. A theory T is correct if its every sentence A ∈ Σ provable in T is true, and every sentence
A ∈ Σ refutable in T is false.

In a correct theory, in other words, P ⊆ T , while R ∩ T = ∅. We are now going to show that a correct
theory T must contain a true sentence not provable in T.

9.3.1 The diagonal method

Let g be a one-to-one injection assigning to each expression E a number. That number g(E) is called the
Gödel number of E. We also assume that for every number there is an expression which has that number as
its Gödel number. We further let En be an expression such that g(En) = n.

The diagonalisation of En is the expression En(n). Given that En is a predicate, the sentence En(n) is
true iff the predicate En is satisfied by its own Gödel number n. Further, let d(n) be the Gödel number of
En(n).

Definition 9.4 (Diagonal sets). Let X be a set of numbers. The diagonal set Xd will be the set of all n such
that d(n) ∈ X. In other words:

n ∈ Xd ↔ d(n) ∈ X.

9.3.2 Gödel’s theorem: an abstract form

Definition 9.5. The set P is the set of Gödel numbers of all provable sentence:

x ∈ P ↔ x = g(A) ∧ A ∈ P.

Definition 9.6. The complement of a set X ⊆ ω is the set X̃ containing all natural numbers not in X:

X̃ = {x ∈ ω | x /∈ X}.

(Notice the deviation from our notation in Chapter 2.)



9. INCOMPLETENESS RESULTS FOR ARITHMETIC 57

We are now ready to state Gödel’s theorem in a fairly general form (i.e. without imposing specific restric-
tions on T).

Proposition 9.7 (After Gödel). If the set P̃d is expressible in T and T is correct, then there is a sentence
A ∈ Σ such that A ∈ T and A /∈ P.

Proof.

T is correct. Ass. (1)

P̃d is expressible in T. Ass. (2)

∀n(H(n) ∈ T ↔ n ∈ P̃d) Def. 9.1, (2) (3)

h = g(H) Ass. (4)

H(h) ∈ T ↔ h ∈ P̃d UI, (3) (5)

h ∈ P̃d ↔ d(h) ∈ P̃ ↔ d(h) /∈ P Def. 9.4, Def. 9.6 (6)

d(h) = g(H(h)) (4) (7)

d(h) ∈ P ↔ H(h) ∈ P Def. 9.5, (7) (8)

d(h) /∈ P ↔ H(h) /∈ P (8), PL (9)

H(h) ∈ T ↔ H(h) /∈ P (5), (6), (9) (10)

(H(h) ∈ T ∧ H(h) /∈ P) ∨ (H(h) /∈ T ∧ H(h) ∈ P) (10), PL (11)

(H(h) /∈ T ∧ H(h) ∈ P) ⊃ (T is not correct) Def. 9.3 (12)

¬(H(h) /∈ T ∧ H(h) ∈ P) (12), (1), PL (13)

H(h) ∈ T ∧ H(h) /∈ P (11), (13), PL (14)

Therefore, H(h) is the desired sentence.

The following important notion is implicitly used in the above proof.

Definition 9.8 (Gödel sentences). Let X ⊆ ω. The Gödel sentence En for X is a sentence with the following
property:

En ∈ T ↔ n ∈ X.

(Informally, a Gödel sentence asserts that its own Gödel number lies in X.)

When considering a theory T (of the signature Σ) with specific properties it will be convenient to verify

the claim that P̃d is expressible in T by verifying three conditions:

G1: For any set X expressible in T, the set Xd is expressible in T.

G2: For any set X expressible in T, the set X̃ is expressible in T.

G3: The set P is expressible in T.

The three conditions jointly imply that P̃d is expressible in T. It is in general the third condition which
demands greater effort.

9.3.3 Tarski’s theorem: an abstract form

A particularly simple route to Gödel’s incompleteness theorems is offered by Tarski’s theorem on the indefin-
ability of truth. We shall now state it, again, without making specific assumptions about T. We first prove
the following lemma.

Proposition 9.9 (Diagonal lemma). For any set X, if Xd is expressible in T, then there is a Gödel number
for X.



9. INCOMPLETENESS RESULTS FOR ARITHMETIC 58

Proof.

H expresses Xd in T. Ass. (15)

∀n(H(n) ∈ T ↔ n ∈ Xd) Def. 9.1, (15) (16)

h = g(H) Ass. (17)

d(h) = g(H(h)) (17) (18)

H(h) ∈ T ↔ h ∈ Xd UI, (16) (19)

h ∈ Xd ↔ d(h) ∈ X Def. 9.4, Def. 9.6 (20)

H(h) ∈ T ↔ d(h) ∈ X (19), (20) (21)

H(h) is a Gödel sentence for X. (18), (21), Def. 9.8

Proposition 9.10. If T satisfies the condition G1, then for any X expressible in T, there is a Gödel number
for X.

Proof. If X is expressible in T, then, by G1, Xd is expressible in T. Then, by the Diagonal lemma, there is a
Gödel number for X.

The abstract form of Gödel’s theorem above is now allowed an even shorter proof.

Proof of Gödel’s theorem based on the Diagonal lemma.

T is correct. Ass. (22)

P̃d is expressible in T. Ass. (23)

There is a Gödel sentence G for P̃ . (23), Diagonal lemma (24)

G ∈ T ↔ G /∈ P (24), Def. 9.5 (25)

G ∈ T ∧ G /∈ P (22), (25), PL

The Diagonal lemma also yields Tarski’s theorem.

Proposition 9.11 (After Tarski). Let T be the set of Gödel numbers of the true sentences of T. Then the
following claims hold:

1. The set T̃d is not expressible in T.

2. If G1 holds for T, then T̃ is not expressible in T.

3. If G1 and G2 hold for T, then T is not expressible in T.

Proof. We shall prove each of the claims in its own turn.

1. If T̃d were expressible in T, then, by the Diagonal lemma, there must be a Gödel sentence for T̃ . But
such a sentence would have been true iff its Gödel number was not the Gödel number of a true sentence.
This is impossible; therefore, there is no Gödel sentence for T̃ . Hence, T̃d is not expressible in T.

2. Suppose G1 holds. Then, if T̃ were expressible in T, T̃d must be expressible in T. But this contradicts
the just proven claim 1.

3. Suppose G1 and G2 hold. Then, if T were expressible in T, T̃ must be expressible in T. But this
contradicts the just proven claim 2.

9.4 Tarski’s theorem for arithmetic

There are several ways of proving incompleteness of Peano arithmetic—a standard axiomatisation of arithmetic.
Closely following [Smu94], we are now interested in an especially simple proof utilising Tarski’s theorem.



9. INCOMPLETENESS RESULTS FOR ARITHMETIC 59

9.4.1 Syntax

We now move on to investigate a first-order arithmetical theory involving addition, multiplication, and expo-
nentiation. The alphabet that we use includes the following thirteen symbols:

0 ′ ( ) f ′ v ¬ ⊃ ∀ = ≤ ♯

The expressions 0, 0′, 0′′, and so forth, are called numerals and will be used as names of the numbers 0, 1,
2, and so forth. It is then clear that ′ serves as a name of the successor function. The symbols f ′, f ′′, and
f ′′′ are the names of the operations of addition, multiplication, and exponentiation. They are abbreviated as
+, ·, and E respectively. The usual logical constants of the first-order calculus retain their meaning. But we
also need a countably infinite list of variables v1, v2, . . . , vn, . . .; these we put in our 13-symbol alphabet by
abbreviating v1, v2, v3, . . . as v′, v′′, v′′′, . . ..

Terms are formed according to the following rules:

1. Every variable and numeral is a term.

2. If t1 and t2 are terms, then (t1 + t2), (t1 · t2), and (t1Et2) are also terms.

A constant term contains no free variables.
An atomic formula is expression of the form t1 = t2 and t1 ≤ t2. The set of formulae is formed according

to the usual rules of first-order calculus.
The notions of free and bound variables and of sentences carry over from the first-order calculus. A special

comment is needed for substitution of numerals for variables. For any number n, by n we mean the numeral
designating n (this accords with our earlier notation for designating elements in a model). Thus, 5 abbreviates
the expression 0′′′′′. Further, deviating somewhat from our previous notation, we write A(vi) to indicate
a formula having vi as its only free variable. Similarly, for any numbers k1, . . . , kn, we write A(k1, . . . , kn)
to mean a formula obtained by substituting the numerals k1, . . . , kn for the free occurrence of the variables
vi1 , . . . , vin

. A formula is said to be regular if i1 = 1, . . . , in = n.
The complexity of formulae is interpreted analogously to the case of first-order calculus.
The following abbreviations will be used:

(A ∨ B) ⇐⇒ (¬A ⊃ B)

(A ∧ B) ⇐⇒ ¬(A ⊃ ¬B)

A ↔ B ⇐⇒ ((A ⊃ B) ∧ (B ⊃ A))

∃viA ⇐⇒ ¬∀vi¬A

t1 ̸= t2 ⇐⇒ ¬t1 = t2

t1 < t2 ⇐⇒ ((t1 ≤ t2) ∧ (t1 ̸= t2)

tt21 ⇐⇒ t1Et2

(∀vi ≤ t)A ⇐⇒ ∀vi(vi ≤ t ⊃ A)

(∃vi ≤ t)A ⇐⇒ ¬(∀vi ≤ t)¬A.

We shall also omit outward parentheses, in accordance with our earlier usage. Another auxiliary notion is that
of designation. It is defined according to the following rules:

1. A numeral n designates the number n.

2. If the constant terms c1 and c2 designate the numbers n1 and n2, then (c1 + c2) designates the sum
n1+n2, (c1 · c2) designates the product n1·n2, (c1Ec2) designates the number nn2

1 , and c1
′ designates

n1 + 1.

9.4.2 The notion of truth

The definition of truth is carried out by induction on the complexity of formulae.

T0: An atomic sentence c1 = c2 is true iff c1 and c2 designate the same natural numbers. An atomic sentence
c1 ≤ c2 is true iff c1 designates the number less or equal than the number designated by c2.

T1: A sentence ¬A is true iff A is not true.



9. INCOMPLETENESS RESULTS FOR ARITHMETIC 60

T2: A sentence A ⊃ B is true iff either A is not true, or B is true.

T3: A sentence ∀viF is true iff for every n ∈ ω, the sentence F (n) is true.

An open formula F (vi1 , . . . , vik
) is correct if for all numbers n1, . . . , nk, the sentence F (n1, . . . , nk) is true.

Substitution and equivalence are defined in the usual way.

9.4.3 The notion of Arithmetic and arithmetic sets and relations

We can generalise our earlier notion of expressibility. We say that F (v1, . . . , vn) expresses the set of n-tuples
⟨k1, . . . , kn⟩ (where ki ∈ ω). That is, F (v1, . . . , vn) expresses the relation R(x1, . . . , xn) just in case:

F (k1, . . . , kn) is true ↔ R(k1, . . . , kn).

Example 9.12. The formula ∃v2(v1 = 0′′ · v2) expresses the set of even numbers.

A set or relation is called Arithmetic if it is expressed by a formula of LE . A set or relation is called
arithmetic if it is expressed by a formula of LE in which the exponential symbol does not occur. Analogously, a
function f(x1, . . . , xn) is Arithmetic iff there is a formula F (v1, . . . , vn, vn+1) such that for all x1, . . . , xn, y ∈ ω,
the sentence F (x1, . . . , xn, y) is true iff f(x1, . . . , xn) = y.

9.4.4 Concatenation

We are looking to define the function x ∗b y for any b > 1.

Example 9.13. 42 ∗10 8768 = 428768.

We notice that m ∗10 n = m · 10ℓ(n) + n. Hence, generally, m ∗b n = m · bℓ(n) + n.

Proposition 9.14. For every b > 1, the relation x ∗b y = z is Arithmetic.

Proof. Omitted.

Proposition 9.15. For every n, b > 1, the relation x1 ∗b . . . ∗b xn = y is Arithmetic.

Proof. By induction on n.

9.4.5 Gödel numbering

We assign Gödel numbers to expressions in order to be able to talk about expressions ‘indirectly’ by talking
about their Gödel numbers.

The idea of [Qui51] was to use the base 10 notation so that the expression S5S3S4 were assigned the Gödel
number 534. We use the base 13 notation and some modifications will be required. We use η, ϵ, and δ as
digits for 10, 11, and 12 respectively. Thus we assign Gödel numbers to our thirteen symbols as follows:

0 ′ ( ) f ′ v ¬ ⊃ ∀ = ≤ ♯
1 0 2 3 4 5 6 7 8 9 η ϵ δ

Example 9.16. The Gödel number of the expression 0′′ ≤ 0′′′ is the number 100ϵ100013, that is, the number
0 + 0 · 13 + 0 · 132 + 1 · 133 + 11 · 134 + 0 · 135 + 0 · 136 + 1 · 137.

For any two expressions Ex and Ey the Gödel number of the expression ExEy is x ∗13 y.
Notice also that the numeral n consists of 0 followed by n primes, so that its Gödel number consists of 1

followed by n occurrences of n. Hence it is 13n.

9.4.6 Tarski’s theorem

The notions of Gödel sentence carries over from the earlier discussion.
Given any formula F (v1), the sentence F (n) is equivalent to the sentence ∀v1(v1 = n ⊃ F (v1)). We shall

designate ∀v1(v1 = n ⊃ F (v1)) as F [n]. (The same abbreviation holds for any expression E which is not
necessarily a formula.)

Let e, n ∈ ω. Let the Gödel number of E be e. Then by r(e, n) we mean the Gödel number of the expression
E[n]. Our goal is to show that r(x, y) is Arithmetic. (The function r(x, y) is also called the representation
function of LE .)

Let Ex[y] be the expression ∀v1(v1 = y ⊃ Ex). Suppose the Gödel number of ∀v1(v1 = is k. Then the Gödel
number of Ex[y] is k∗13y ∗8∗x∗3. So we can see that r(x, y) can be written as ∃w(w = 13y ∧z = k∗w∗8∗x∗3.
Therefore:



9. INCOMPLETENESS RESULTS FOR ARITHMETIC 61

Proposition 9.17. The function r(x, y) is Arithmetic.

9.4.7 Diagonalisation and Tarski’s theorem

Let the function d(x) = r(x, x). The function d is called the diagonal function. Clearly it is Arithmetic, since
r is Arithmetic. For any n ∈ ω, d(n) will be the Gödel number of En[n]. We can now introduce the already
familiar notion of the diagonal set. For any X ⊆ ω, Xd is the set of n such that d(n) ∈ X.

Proposition 9.18. If X is Arithmetic, then so is Xd.

Proof. The set Xd consists of x such that ∃y(d(x) = y ∧ y ∈ X). Since d(x) is Arithmetic, there is D(v1, v2)
expressing the relation d(x) = y. But suppose F (v1) expresses X. Then Xd is expressed by ∃v2(D(v1, v2) ∧
F (v2)).

We can now prove the following claim to be used (later . . . ) in constructing a true unprovable sentence:

Proposition 9.19. If X is Arithmetic, then there is a Gödel sentence for X.

Proof. Suppose X is Arithmetic. Then Xd is Arithmetic, too (by Proposition 9.18). Let H(v1) ∈ LE be a
formula expressing Xd, and let h be its Gödel number. Then:

H(v1) is true ↔ h ∈ Xd ↔ d(h) ∈ X.

But d(h) is the Gödel number of H[h]. Therefore, H[h] is a Gödel sentence for X.

We can now prove Tarski’s theorem.

Proposition 9.20 (Tarski). The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic.

Proof. We first show that T̃ is not Arithmetic. Indeed, if T̃ were Arithmetic, then, by Proposition 9.19, there
would be a Gödel sentence for T̃ . But there is no Gödel sentence for T̃ , since such a sentence would be true if
and only if it were not true. So T̃ is not Arithmetic.

On the other hand, if F (v1) expresses X, then ¬F (v1) expresses X̃. Hence, for every X, if X is Arithmetic,

then X̃ is Arithmetic, too. And since T̃ is not Arithmetic, it now follows that T is not Arithmetic.

Armed with Tarski’s theorem, we will be able to argue that, since the set of Gödel numbers of all provable
sentences is Arithmetic, truth and provability do not coincide.

9.5 Peano arithmetic

9.6 Gödel’s theorems

9.7 Further notes on undecidability and incompleteness

[Smu94]


