Formal logic/Metamathematics

Wk 1
Semantics for quantifiers

1. Prove the following propositions:

a) (5)p = —(3&)~¢ and —~(3§)¢ E (§)¢ [3.6 E(b) in Bostock (1997), p. 97]
b) p(a/E) = (3E)p [3.6 F(b)]

2. Show that the following formula are invalid and satisfiable:

a) (3x)(y)(Pxy > Pyx)
b) (x)Px 2 (x)Qx) o (x)(Px > Qx)

¢) 3x)(y)~Pxy o (y)~(E@x)Pxy
3. Find a counter-example to the sequent [3.10.1 in Bostock (1997), p. 138]:
X)(¥)(2)(Rxy & Ryz o Rxz) E (X)(y)(z)("Rxy & “Rxz > Rxz)
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Wk 2

Further issues in first-order logic

1. Prove the following claim:

If - ¢, then + ¢p(a/§), where a and & are any terms.

Hint: first prove the case where ¢ is an axiom.

2. Prove the following claim:

If D and D" are domains of the same cardinality, then a first-order formula ¢ is satisfiable

in D just in case it is satisfiable in D".

3. Past Papers, TT 99, #3.
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Wk 3

Recursive functions

1. Past Papers, TT 00, 13 (b)-(c)

a) Assume that ki, ..., k, 1s a sequence of distinct numbers and that /i, ..., /, is any

[, when x =k;

sequence of numbers. Show that if f{x) = { , then f'is computable.

undefined otherwise

b) Conclude that every 1-place function with a finite domain is computable.

2. TT 98, 14 (c)-(d)

a) Define what is it for a relation to be primitive recursive.

b) Show that if R(x,y) and S(x,y) are primitive recursive relations, then so are the
following: —R(x,y), R(x,y) v S(x,p), R(x,y) & S(x,y), (Az <y)R(x,z), (Vz < y)R(x,z).
3. 7T 00, 14 (c)

Assume that the functions f1, f>, g1, and g satisfy the following equations:
£10)=0, /2(0)=0, fi(x+1D) =g (f2(x), f2(x+D=g,(f(x))

Show that if g; and g, are primitive recursive, then so are f; and f;.

4. What is the evidence that Church’s thesis for predicates is true?

5. Describe a Turing machine that computes the function f(x,y)=x+y.
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Wk 4

Recursive functions, undecidability &c.

1. Let & be a formal language. Conclude that the procedure identifying the given finite
string of symbols as a term or formula of £ is decidable.

2. TT00, 15 (a,b)

Assume an exhaustive enumeration ¢,,4,,...,4,,... of one-place partial recursive
functions and a three-place recursive relation 7's.t. VeVx(x € Dom(g,) <> IyT'(e,x,y)).

A set S is semi-recursive iff there is a one-place partial recursive function f's.t.
Vx(xeS < f(x)=1).
a) Show that S is semi-recursive iff there is a one-place partial recursive function f's.t.
S =Dom(f).
b) Show that S is semi-recursive iff there is a two-place recursive function R s.t.
Vx(x e S <> JyR(x,p)).
3. 7799, 13 (b)

dr an
Suppose that y : N* — N is primitive recursive. Let A(n,m) :Zi - y(n,i).

i=0

Prove that /4 is primitive recursive.
4. TT 99, 12 (a,c)
a) Define what it is for a function of natural numbers to be representable in an axiomatic
theory.

b) Prove that exponentiation on the natural numbers is representable in Peano Arithmetic.
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WKk §
Consistency, undecidability

1. Show that the relation x* y =z is recursively enumerable for any prime p, where “*’

stands for concatenation.

2. TT00, 16 (c)

Deduce that no consistent theory of arithmetic in which all recursive functions are
representable is decidable.

3. 7799, 13 (a,b)

a) Define w-consistency for S a theory in a language with a numeral for each natural
number, and prove that if S is w-consistent, then it is consistent.

b) Show that for G the Gddel sentence of an axiomatic system S with arithmetized syntax,
if §'is w-consistent, then S+ —G. [You may take as given any standard properties of
arithmetized syntax.]

4. Show that consistency is a strictly weaker condition than w-consistency.

Readings
Enderton, 4 Mathematical Introduction to Logic, §§3.4-3.5.
Boolos and Jeffrey, Computability and Logic, ch.15.
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Wk 6

Consistency, undecidability 1T

1. Prove that for any formal system of arithmetic, the condition of being w-consistent is
strictly weaker than that of being sound with respect to truth in arithmetic. [Hint: use the
diagonal lemma.]

2. Let ¢(x) be a recursively enumerable (r.e.) formula that expresses the set @ of Godel
numbers of formula provable in P.A.

a) Show that for any r.e. sentence S, if S is true, then PA + S, and conclude that for every
r.e. sentence S, the sentence S o ¢('S") is true.

b) Show that for some sentence S, the sentence S o ¢('S") is false.

3. Show that if an axiomatic theory ¥ is w-consistent, and S is any sentence in its
language, then TU{S} or TU{—S} is w-consistent.

4*. Show that there is no complete w-consistent extension of P.A. containing a false

sentence.
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Wk 7

Provability

1. TT 00, 17 (a,b,c)

Let T be any theory of arithmetic (not necessarily consistent) in which there is a fixed

point for each 1-place predicate, and in which +,—(0 =1). Let Pry (x) be any predicate

meeting Hilbert-Bernays (H-B) adequacy conditions on a provability predicate.

a) State these conditions

b) State and prove Lob’s theorem

¢) Deduce Godel’s Second Incompleteness Theorem in the form: if 7 is consistent, then
#,—Pr, ((0=1").

2. Let ¥ be an arithmetical theory supplied with the predicate B satisfying H-B conditions
for the provability predicate. Suppose that X is a sentence of € and BX O X is provable
in ¥ and that there is a sentence Y s.t. Y =(BY o X)is provable in £. Then X is provable
in %,

3.7TT00, 17 (a,b,c)

Prove Lob’s theorem from the Second Incompleteness Theorem. [Hint: prove the
contrapositive of Lob’s theorem by applying Second Incompleteness Theorem to the
consistency of 7 U{—¢}, where Tt ¢.]

Readings

Boolos and Jeffrey, ch. 16;

Boolos, The Logic of Provability (1993), Introduction and ch. 3.
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Wk 8

Provability 11

1. 7798, 17 (a,b)

a) Assume that Prr (x) be any predicate meeting Hilbert-Bernays (H-B) adequacy
conditions on a provability predicate for a theory 7. Show that —=Pr7 ("0 = 1) is provably
equivalent in 7 to the Godel sentence of 7 constructed using Pry (x).

b) Let Provy (x, y) be an arithmetical formula in the language of 7, with no unbounded

quantifiers, s.t. for formal numerals m and n, Prov,(m,n) is true iff m is the Godel

number of a proof in 7 of the formula whose G6del number is 7 (compare Boolos and Jeffrey,
ch. 16). Assume that 7 proves all those true arithmetical sentences in the language of T

which contain no unbounded quantifiers. Let
. def .
Pr, (x) =3y(Prov,(y,x) & Vz < y—=Prov,(z,neg(x))), where neg(x) is the Goédel number

of the formula whose Gddel number is x. Show that T+ —Pr, (0= 17).

2. Let ¥ be a theory as in Wk 7, no. 2. Show that for any two sentences X and Y of T, the
sentence B(Y =(BY D X)) D (B(BX D X)D BX) is provable in 2. [Hint: first show that

B(Y=(BY D X)) D(BY D BX) is provable.]



