Semantics for quantifiers

- 1. Prove the following propositions:
- a) $(\xi)\phi \models \neg(\exists \xi)\neg\phi$ and $\neg(\exists \xi)\neg\phi \models (\xi)\phi$ [3.6 E(b) in Bostock (1997), p. 97]
- b) $\phi(\alpha/\xi) = (\exists \xi) \phi [3.6 \text{ F(b)}]$
- 2. Show that the following formulæ are invalid and satisfiable:
- a) $(\exists x)(y)(Pxy \supset Pyx)$
- b) $((x)Px \supset (x)Qx) \supset (x)(Px \supset Qx)$
- c) $(\exists x)(y)\neg Pxy \supset (y)\neg (\exists x)Pxy$
- 3. Find a counter-example to the sequent [3.10.1 in Bostock (1997), p. 138]:
- $(x)(y)(z)(Rxy \& Ryz \supset Rxz) \models (x)(y)(z)(\neg Rxy \& \neg Rxz \supset Rxz)$

Further issues in first-order logic

1. Prove the following claim:

If $\vdash \phi$, then $\vdash \phi(\alpha/\xi)$, where α and ξ are any terms.

Hint: first prove the case where ϕ is an axiom.

2. Prove the following claim:

If D and D' are domains of the same cardinality, then a first-order formula ϕ is satisfiable in D just in case it is satisfiable in D'.

3. Past Papers, TT 99, #3.

Recursive functions

- 1. Past Papers, TT 00, 13 (b)-(c)
- a) Assume that $k_1, ..., k_n$ is a sequence of distinct numbers and that $l_1, ..., l_n$ is any sequence of numbers. Show that if $f(x) = \begin{cases} l_i \text{ when } x = k_i \\ \text{undefined otherwise} \end{cases}$, then f is computable.
- b) Conclude that every 1-place function with a finite domain is computable.
- 2. TT 98, 14 (c)-(d)
- a) Define what is it for a relation to be primitive recursive.
- b) Show that if R(x,y) and S(x,y) are primitive recursive relations, then so are the following: $\neg R(x,y)$, $R(x,y) \lor S(x,y)$, R(x,y) & S(x,y), $(\exists z < y)R(x,z)$, $(\forall z < y)R(x,z)$.

 3. *TT 00, 14 (c)*

Assume that the functions f_1 , f_2 , g_1 , and g_2 satisfy the following equations:

$$f_1(0) = 0$$
, $f_2(0) = 0$, $f_1(x+1) = g_1(f_2(x))$, $f_2(x+1) = g_2(f_1(x))$.

Show that if g_1 and g_2 are primitive recursive, then so are f_1 and f_2 .

- 4. What is the evidence that Church's thesis for predicates is true?
- 5. Describe a Turing machine that computes the function f(x, y) = x + y.

Recursive functions, undecidability &c.

- 1. Let \mathfrak{L} be a formal language. Conclude that the procedure identifying the given finite string of symbols as a term or formula of \mathfrak{L} is decidable.
- 2. TT 00, 15 (a,b)

Assume an exhaustive enumeration $\phi_0, \phi_1, ..., \phi_e, ...$ of one-place partial recursive

functions and a three-place recursive relation T s.t. $\forall e \forall x (x \in Dom(\phi_e) \leftrightarrow \exists y T(e, x, y))$.

A set S is *semi-recursive* iff there is a one-place partial recursive function f s.t.

$$\forall x (x \in S \leftrightarrow f(x) = 1).$$

- a) Show that S is semi-recursive iff there is a one-place partial recursive function f s.t.
- S = Dom(f).
- b) Show that S is semi-recursive iff there is a two-place recursive function R s.t.

$$\forall x (x \in S \leftrightarrow \exists y R(x, y)).$$

Suppose that
$$\chi: \mathbb{N}^2 \to \mathbb{N}$$
 is primitive recursive. Let $h(n,m) = \sum_{i=0}^m i \cdot \chi(n,i)$.

Prove that *h* is primitive recursive.

- 4. TT 99, 12 (a,c)
- a) Define what it is for a function of natural numbers to be representable in an axiomatic theory.
- b) Prove that exponentiation on the natural numbers is representable in Peano Arithmetic.

Consistency, undecidability

- 1. Show that the relation $x *_p y = z$ is recursively enumerable for any prime p, where '*' stands for concatenation.
- 2. TT 00, 16 (c)

Deduce that no consistent theory of arithmetic in which all recursive functions are representable is decidable.

- 3. TT 99, 13 (a,b)
- a) Define ω -consistency for S a theory in a language with a numeral for each natural number, and prove that if S is ω -consistent, then it is consistent.
- b) Show that for G the Gödel sentence of an axiomatic system S with arithmetized syntax, if S is ω -consistent, then $S
 varthetarrow \neg G$. [You may take as given any standard properties of arithmetized syntax.]
- 4. Show that consistency is a strictly weaker condition than ω -consistency.

Readings

Enderton, A Mathematical Introduction to Logic, §§3.4-3.5.

Boolos and Jeffrey, Computability and Logic, ch.15.

Consistency, undecidability II

- 1. Prove that for any formal system of arithmetic, the condition of being ω -consistent is strictly weaker than that of being sound with respect to truth in arithmetic. [Hint: use the diagonal lemma.]
- 2. Let $\phi(x)$ be a recursively enumerable (r.e.) formula that expresses the set Φ of Gödel numbers of formulæ provable in P.A.
- a) Show that for any r.e. sentence S, if S is true, then $PA \vdash S$, and conclude that for every r.e. sentence $S \supset \phi(^TS^T)$ is true.
- b) Show that for some sentence S, the sentence $S \supset \phi(\lceil S \rceil)$ is false.
- 3. Show that if an axiomatic theory $\mathfrak T$ is ω -consistent, and S is any sentence in its language, then $\mathfrak T \cup \{S\}$ or $\mathfrak T \cup \{\neg S\}$ is ω -consistent.
- 4*. Show that there is no complete ω -consistent extension of P.A. containing a false sentence.

Provability

1. TT 00, 17 (a,b,c)

Let T be any theory of arithmetic (not necessarily consistent) in which there is a fixed point for each 1-place predicate, and in which $\vdash_T \neg (0 = 1)$. Let $\Pr_T(x)$ be any predicate meeting Hilbert-Bernays (H-B) adequacy conditions on a provability predicate.

- a) State these conditions
- b) State and prove Löb's theorem
- c) Deduce Gödel's Second Incompleteness Theorem in the form: if T is consistent, then $\forall_T \neg \Pr_T(0 = 1)$.
- 2. Let $\mathfrak T$ be an arithmetical theory supplied with the predicate B satisfying H-B conditions for the provability predicate. Suppose that X is a sentence of $\mathfrak T$ and $BX \supset X$ is provable in $\mathfrak T$ and that there is a sentence Y s.t. $Y \equiv (BY \supset X)$ is provable in $\mathfrak T$. Then X is provable in $\mathfrak T$.
- 3. TT 00, 17 (a,b,c)

Prove Löb's theorem from the Second Incompleteness Theorem. [Hint: prove the contrapositive of Löb's theorem by applying Second Incompleteness Theorem to the consistency of $T \cup \{\neg \phi\}$, where $T \not\vdash \phi$.]

Readings

Boolos and Jeffrey, ch. 16;

Boolos, The Logic of Provability (1993), Introduction and ch. 3.

Provability II

- 1. TT 98, 17 (a,b)
- a) Assume that $Pr_T(x)$ be any predicate meeting Hilbert-Bernays (H-B) adequacy conditions on a provability predicate for a theory T. Show that $\neg Pr_T(\neg 0 = 1 \neg)$ is provably equivalent in T to the Gödel sentence of T constructed using $Pr_T(x)$.
- b) Let $\operatorname{Prov}_T(x, y)$ be an arithmetical formula in the language of T, with no unbounded quantifiers, s.t. for formal numerals \overline{m} and \overline{n} , $\operatorname{Prov}_T(\overline{m}, \overline{n})$ is true iff m is the Gödel number of a proof in T of the formula whose Gödel number is n (compare Boolos and Jeffrey, ch. 16). Assume that T proves all those true arithmetical sentences in the language of T which contain no unbounded quantifiers. Let
- $\Pr_T^*(x) \stackrel{\text{def}}{=} \exists y (\Pr_T(y, x) \& \forall z < y \neg \Pr_T(z, \operatorname{neg}(x))), \text{ where } \operatorname{neg}(x) \text{ is the G\"{o}del number}$ of the formula whose G\"{o}del number is x. Show that $T \vdash \neg \Pr_T^*(\lnot 0 = 1 \urcorner)$.
- 2. Let $\mathfrak T$ be a theory as in Wk 7, no. 2. Show that for any two sentences X and Y of $\mathfrak T$, the sentence $B(Y \equiv (BY \supset X)) \supset (B(BX \supset X) \supset BX)$ is provable in $\mathfrak T$. [Hint: first show that $B(Y \equiv (BY \supset X)) \supset (BY \supset BX)$ is provable.]