next up previous
Next: First-order validity Up: Week 5: First-order tableau Previous: Week 5: First-order tableau


First-order tableaux

Prove each of the following (where $ \phi$ $ \dashv$ $ \vdash$ $ \psi$ iff $ \phi$ $ \vdash$ $ \psi$ and $ \psi$ $ \vdash$ $ \phi$):

  1. $ \exists$x[Fx $ \wedge$ $ \neg$Fx] $ \vdash$
  2. [$ \exists$xFx $ \wedge$ $ \forall$x$ \neg$Fx] $ \vdash$
  3. $ \exists$x$ \forall$y[Rxy $ \leftrightarrow$ $ \neg$Ryy] $ \vdash$
  4. $ \forall$xFx $ \dashv$ $ \vdash$ $ \neg$$ \exists$x$ \neg$Fx
  5. $ \exists$xFx $ \dashv$ $ \vdash$ $ \neg$$ \forall$x$ \neg$Fx
  6. $ \forall$x[$ \exists$yFxy $ \rightarrow$ Gx] $ \dashv$ $ \vdash$ $ \forall$x$ \forall$y[Fxy $ \rightarrow$ Gx]
  7. $ \forall$x$ \exists$y[Fax $ \wedge$ Gay] $ \dashv$ $ \vdash$ $ \exists$y$ \forall$x[Fax $ \wedge$ Gay]



Sandy Berkovski